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Non-negative Matrix Factorization (NMF) is an unsupervised algorithm for low-rank approximation of
non-negative data and has been widely used in many fields, but its performance in feature extraction is
not satisfactory. The main reason is that the model of NMF and its variants did not take into account the
label information of the samples, which can add the discriminant ability of the methods. In this paper,
we proposed a novel method, called discriminant non-negative graph embedding (DNGE) algorithm in
which the label information of the samples and the local geometric structure are all integrated in the
objective function. Furthermore, we incorporated the between-class graph and within-class graph into
the objective functions to indicate that we not only used the local separability but also used the whole
separability of the samples. To guarantee convergence, we use the KKT condition to calculate the non-
negative solution of the DNGE. A convergent multiplicative non-negative updating rule is then derived to
learn the transformation matrix. Experiments are conducted on the CMU PIE, ORL, Yale, FERET and AR
database. The results show that the DNGE algorithm provides better facial representation and achieves
higher recognition rates than naive Non-Negative Matrix Factorization and its extension methods.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

IN recent years, Non-negative Matrix Factorization (NMF) [1]
algorithm has become popular in data representation. NMF
decomposes the data matrix as a product of two matrices which
possess only non-negative elements. Compared with the other
traditional matrix factorization algorithm, such as Singular Value
Decomposition (SVD) [2], NMF can guarantee the factorization
matrices' non-negativity, which makes NMF competitive in prac-
tice since most of the data in practice are non-negative. The non-
negative constraints of NMF lead to a part-based representation
because they only allow additive, not subtractive, combinations
[4]. Lee and Seung [3] showed that NMF can learn a parts-based
representation and the basis images of the face image consist of
basis vectors representing eyes, mouths, nose and contour of face.

NMF have been successfully used for face recognition [5-8] and
document clustering [9], where it is natural to consider the object
as a combination of parts to form a whole. However, NMF did not
take into account the geometrical structure of the data. In fact, the
geometrical structure has played an important role in classification
and clustering. In [4], Yuan et al. proposed a Projective Non-
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negative Matrix Factorization (PNMF) approach which was a new
variant of the NMF method for learning spatially localized, sparse,
part-based subspace representations of visual patterns.

In order to detect the underlying manifold structure, many
manifold learning algorithms have been proposed, such as Locally
Linear Embedding (LLE) [10], ISOMAP [27], Laplacian Eigenmap
[28] and Locality Preserving Projection (LPP) [22]. Many experi-
ments showed that the exploitation of the geometrical structure
and the local invariance can improve the classification perfor-
mance [11-13,34-35]. Motivated by the manifold learning method
which use the graph modeling for the local geometric structure,
Cai et al. [9] proposed a Graph regularized NMF (GNMF) approach
to encode the geometrical information of the data space. In GNMF,
a nearest neighbor graph is integrated into NMF to model the local
manifold structure. In order to preserve the local coordinate
structure in NMF, Chen et al. [6] proposed a Non-negative Local
Coordinate Factorization (NLCF) method which adds a local coor-
dinate constraint into the standard NMF objective function.

Based on the graph structure and sparse representation, many
variants of NMF have been proposed. However, most of them are
unsupervised and fail to discover the discriminant structure and
non-negative representation in the data. The semi-supervised
matrix decomposition method is also proposed and has the
following rationale: many machine learning researchers have
found that unlabeled data, when used in conjunction with a small
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amount of labeled data, can produce considerable improvement in
classification accuracy [14]. For semi-supervised manner, Liu et al.
[15] proposed a Constrained Non-negative Matrix Factorization
approach called CNMF. CNMF takes the label information as
additional hard constraint, and the central idea of CNMF is that
the data points from the same class should be merged together in
the new representation space. Thus the obtained part-based
representation of CNMF has the consistent label with the original
data, and therefore can have more discriminant power.

In order to improve the discriminant ability of original NMF,
some studies expand NMF to supervised matrix factorization
approaches by introducing the label information. For example,
the Discriminant Non-negative Matrix Factorization (DNMF) [16-
18] imposes more constraint on the coefficients in order to take
into account the class information. Liu et al. proposed the
Projective Non-negative Graph Embedding (PNGE) [19] algorithm
which is a general formulation for non-negative data factorization.
In PNGE, the non-negative coefficient vector of each data is
assumed to be projected from its original feature representation
with a universal non-negative transformation matrix. An et al.
proposed a manifold-respecting discriminant Non-negative Matrix
Factorization in [33], which construct the intra-class neighbor-
hoods graph and inter-class graph into the objective function.
However, these methods did not incorporate the label information
in the model and only used the label information in local with-
class and inter-class scatter. In the first part of the objective
function, the above mentioned NMF based methods use the form
of ||X— UV, which cannot excavate any discriminant information
in this term. Thus these methods did not simultaneously take
advantage of the label information and the manifold structure.

Previous NMF-based methods such as GNMF, PNMF and PNGE
did not sufficiently utilize the discriminant information since the
part of IX—UVI2 does not embedding any discriminant knowl-
edge. Motivated by recent development in matrix factorization
and manifold learning, in this paper, we develop a novel discri-
minant non-negative graph preserving (DNGE) algorithm for face
recognition. In the first part of the objective function of DNGE, we
use the form of 'Y —XAl2 and this term can obtain discriminant
information since the label matrix Y is used. On the other side, for
graph embedding, we construct the local between-class graph and
local within-class graph for preserving the local information of the
data. As shown in [29], the local within-class graph can assemble
the data point with its neighborhood within the same class, and
the between-class graph can exclude the data point without the
same class. Our goal is to use the label information of the original
data to find a parts-based representation space in which the data
that come from the same class are near to each other and from
different classes are far from each other. To this end, we propose a
new NMF-based objective function which incorporates the dis-
criminant graph structure simultaneously. In this new objective
function, the local separability was introduced to approximate the
global separability. We also develop an optimization scheme to
solve the objective function based on KKT conditions. The con-
vergence proof of our proposed optimization scheme is provided.

It is worthwhile to highlight several aspects of our proposed
algorithm: (1) in our proposed DNGE algorithm we used two
graphs to preserve the manifold structure of the original data. One
local within-class graph is designed to characterize intra-class
compactness, and the other local between-class graph is formu-
lated for achieving interclass separability. In DNGE, the data points
are mapped into a subspace in which the nearby points with the
same label are close to each other while the nearby points with
different labels are far apart. In this way, our proposed algorithm
can obtain more discriminant information for classification. (2) We
directly incorporate the label of the data for non-negative factor-
ization, and we integrate the local separability and the global

separability together. (3) A multiplicative non-negative updating
rule is then derived to learn the non-negative transformation
matrix and the updating rule is proved to be convergent.

The rest of the paper is organized as follows. In Section 2, we
briefly review NMF, GNMF, and PNGE. The proposed DNGE algo-
rithm and related analyses are described in Section 3. In Section 4,
experiments are carried out to evaluate our DNGE algorithm. The
conclusions are given in Section 5.

2. Non-negative Matrix Factorization and its variants
2.1. Non-negative Matrix Factorization (NMF) [20]

Given a data matrix X = [X1,X3, ..., Xs] € R™", each column of X
is a sample vector. NMF aims to find two non-negative matrices
U:[uij]eRka and V:[v,-j]eRkX" by minimizing the following
objective function:

EU,V)=IX-UVIZs.t.U;j=0, V;=0 (1)

where Il - I# denotes the matrix Frobenius norm.

Although the objective function E(U, V) in Eq. (1) is convex only
in U or V, it is not convex in both variables together. Therefore, it is
unrealistic to expect an algorithm to find the global minimum of
E(U,V). Lee and Seung [3] presented an iterative updating algo-
rithm to solve this problem. Two key iteration steps are shown in
(2) and (3).
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It is proved that the above update steps will find a local
minimum of the objective function E(U,V) [3]. The matrix U
contains a basis that is optimized for the linear approximation of
the data X, and the matrix V can be regarded as the low-
dimensional representation. Thus the learned transformation
matrix V can be directly used to obtain the encoding coefficient
vectors of the new test samples.

2.2. Graph Regularized Non-negative Matrix Factorization (GNMF)
[9]

The goal of GNMF [9] is to find a compact representation which
uncovers the hidden semantics and simultaneously represents the
intrinsic geometric structure. In GNMF, an affinity graph is con-
structed to encode the geometrical information, and thus it seeks a
matrix factorization which represents the graph structure.

In GNMF, the geometrically based regularization is as follows:

N
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=Tr(VvDVT)—Tr(vWVT) = Tr(VLVT) 4)

where Tr(-) denotes the trace of a matrix and D is a diagonal
matrix whose entries are column (or row, since W is symmetric)
sums of W D;; = 3jWj;. L=D—W, which is called graph Laplacian
[28].

Combining the geometrical based regularization with the
original NMF leads to the objective function of GNMF, we have

E(U,V)y= IX-UVI2+ATr(VLVT) (5)
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