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a b s t r a c t

In this paper, a value-iteration based heuristic dynamic programming (HDP) algorithm is developed to
solve the optimal control for the continuous time affine nonlinear systems. First, a rigorous convergence
proof of the HDP algorithm is given. Second, stability issues of the HDP algorithm for nonlinear systems
are investigated. It is commonly believed that the main drawback of the HDP algorithm is that only the
limit function of the iterative control sequence is proved to be stabilized, thus infinite iterations are
executed. To confront this problem, we present a novel stability result for the HDP algorithm, which
indicates that the resulting iterative control laws after finite iterations can guarantee the closed-loop
stability. A similar stability result is also obtained for the discrete time nonlinear systems. Therefore, the
practicality of the HDP algorithm is greatly improved. Single neural network (NN) structure is employed
to implement the algorithm. It should be pointed that the algorithm can be implemented without
knowing the internal dynamics of the systems. Finally, two numerical examples are given to
demonstrate the effectiveness of the developed methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the most basic design principles in the feedback control
design is to guarantee the closed-loop stability of the nonlinear
systems. Optimal control aims to design a feedback control law,
which not only guarantees the system closed-loop stability, but also
follows the optimal manner according to an overall performance
index. In the past decades, a mountain of work has been done for
the optimal control of nonlinear systems. Dynamic programming
[1], which is proved to be a powerful method, has been extensively
applied to generate the optimal control for nonlinear systems.
However, one notable drawback of this method is the computing
cost with the increasing dimension of the nonlinear systems, which
is referred to as the “curse of dimensionality”. Approximate
dynamic programming (ADP) [2] methods have been proposed to
circumvent this difficulty. Different from the DP methods, ADP
solves the optimal control problems forward-in-time [2,3].

The optimal control for linear systems with respect to a quadric
performance index can be achieved by solving the algebra Riccati
equation (ARE). However, for nonlinear systems, the optimal feed-
back control depends on obtaining the solution to the Hamilton–

Jacobi–Bellman (HJB) equation, which is challenging to solve directly
due to its inherently nonlinear nature. To confront this difficulty,
iterative methods have been proposed to obtain the solution of the
HJB equation indirectly which can be roughly sorted into two classes
[4]: policy-iteration and value-iteration. For the policy-iteration
algorithm [5–11], all the iterative control laws stabilize the system,
however, an initial stabilized control law is required, which is often
difficult to obtain in practical applications.

For the value-iteration algorithm, an initial stabilized control
law is not required. Zhang et al. [12] studied the near-optimal
control for a class of discrete-time affine nonlinear systems with
control constraints by the iterative DHP method. Al-Tamimi et al.
[13] derived a value-iteration based HDP algorithm to solve the
optimal control problems and provided a full rigorous conver-
gence proof. In [14], the HDP algorithm has been used to solve the
non-affine nonlinear systems with respect to a discounted perfor-
mance index. An iterative value-iteration based ADP method has
been proposed in [15] to solve a class of nonlinear zero-sum
differential games. An iterative DHP algorithm has been proposed
in [16] for optimally controlling a large class of nonlinear discrete-
time systems affected by an unknown time variant delay and
system uncertainties. In [17], Huang et al. proposed an optimal
tracking control scheme based on HDP algorithm by transforming
the original tracking problem into a regulation problem with
respect to the state tracking error. A SN-DHP based technique
has been developed in [18] to find the near optimal controller for
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unknown affine nonlinear discrete-time systems. An on-line
learning and control approach based on ADP for wind farm control
and integration with the grid has been investigated in [19]. In [20],
a greedy HDP algorithm has been developed to solve the zero-sum
game problems for affine discrete-time systems, which can be
used to solve the Hamilton–Jacobi–Isaacs equation associated with
H1 optimal regulation control problems. The data-driven ADP
methods have also received considerable attention recently. A
model-free optimal control scheme for a class of linear discrete-
time systems with multiple delays in state, control and output
vectors has been developed in [21], where the optimal control can
be obtained using only measured input/output data from systems
by ADP technology. For more details, see [22–24] and references
therein. However, most of the research on value-iteration focuses
on the discrete-time nonlinear systems, the value-iteration based
HDP algorithm for the continuous-time nonlinear systems remains
unstudied. This motivates our work.

The main drawback of the value-iteration algorithm is that only
the limit function of the iterative control sequence has been proved
to be stabilized while the iterative control laws may be not [25]. This
greatly limits the applications of the value-iteration algorithm. Li
et al. [26] proposed general value-iteration (GVI) algorithm and Wei
et al. [28] proposed a stable θ-ADP scheme, but the initial values of
both are difficult to be obtained. Convergence of the ADP algorithm
does not mean that the iterative control laws provide the closed-loop
stability of the considered nonlinear systems. The closed-loop
stability of the nonlinear systems must be guaranteed when the
optimality is achieved. However, it is worthy noting that in the
existing references, say [12–14,16–18], the optimal iterative control
laws obtained by the value-iteration algorithm are indeed stabilized,
rather than just the limit function of the iterative control sequence. A
theoretical explanation for this phenomenon has not yet been given,
to our best knowledge. In this paper, novel stability results for
iterative control laws are proposed. It is proved that for the infinite
horizon problem, the resulting iterative control laws after finite
iterations can guarantee the closed-loop stability of the nonlinear
systems, which greatly increases the practicability of the value-
iteration based HDP algorithm.

The rest of the paper is organized as follows. In Section 2, the
value-iteration based HDP algorithm for the continuous-time affine
nonlinear systems is developed and a rigorous convergence proof is
given. Novel stability results of the HDP algorithm for the continuous-
time nonlinear systems are proposed. In Section 3, stability issues of
the HDP algorithm for discrete-time nonlinear systems are investi-
gated. NN implementations of the HDP algorithm are given in Section
4. Two simulation examples are employed in Section 5 to demonstrate
the effectiveness of the developed methods.

2. HDP algorithm for continuous-time nonlinear systems

Consider the affine continuous-time nonlinear system of form

_xðtÞ ¼ f ðxðtÞÞþgðxðtÞÞuðxðtÞÞ; xð0Þ ¼ x0; ð1Þ
where xðtÞARn is the state vector and uðtÞARm is the input vector,
f ðxðtÞÞARn and gðxðtÞÞARn�m. It is assumed that f ðxðtÞÞþgðxðtÞÞ
uðxðtÞÞ is Lipschitz continuous on a set ΩDRn which contains the
origin, and that the dynamical system is stabilizable on Ω, which
means that there exists a continuous control function uðxðtÞÞARm

such that the system is asymptotically stable on Ω.
We consider the following quadric performance index:

JðxðtÞÞ ¼
Z 1

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ; ð2Þ

where the state weighting matrix QARn�n is nonnegative definite
and the inputs weighting matrix RARm�m is positive definite. The

objective is to find the control law uðxðtÞÞ which minimizes the
infinite-horizon cost function (2). Note that the control law uðxðtÞÞ
needs to be stabilized and guarantees that (2) is finite, i.e., the
control law must be admissible [5].

2.1. Value-iteration based HDP algorithm for continuous-time
nonlinear systems

In this subsection, we propose the value-iteration based HDP
algorithm for continuous-time nonlinear systems and give the
convergence proof. Note that the key difference between the HDP
algorithm and the general policy-iteration algorithm with k¼1
(which is in fact a variant of the value-iteration algorithm) in [10]
is that the initial control law is not necessary stabilized.

Defining the Hamiltonian of the problem as

HðxðtÞ;uðtÞ; ∂V=∂xÞ ¼ xðtÞTQxðtÞþuðxðtÞÞTRuðxðtÞÞ

þ ∂V
∂x

� �T

ðf ðxðtÞÞþgðxðtÞÞuðxðtÞÞÞ; ð3Þ

then we can start with an initial value V0ðxðtÞÞZ0, and then solves
for u0 as

u0ðxðtÞÞ ¼ arg min
vðxðtÞÞ

HðxðtÞ; vðxðtÞÞ; ∂V0=∂xÞ; ð4Þ

then we update the cost function as

V1ðxðtÞÞ ¼
Z tþh

t
xðτÞTQxðτÞþu0ðxðτÞÞTRu0ðxðτÞÞ dτþV0ðxðtþhÞÞ; ð5Þ

where h40 is the sampling period.
The value-iteration based HDP algorithm iterates between the

following two steps:

� Value update step: update the value using

Viþ1ðxðtÞÞ ¼
Z tþh

t
xðτÞTQxðτÞþuiðxðτÞÞTRuiðxðτÞÞ dτþViðxðtþhÞÞ:

ð6Þ

� Policy improvement step: determine the improved policy using

uiþ1ðxðtÞÞ ¼ arg min
vðxðtÞÞ

HðxðtÞ; vðxðtÞÞ; ∂Viþ1ðxðtÞÞ=∂ðxðtÞÞÞ: ð7Þ

In the above recurrent iteration, i is the iteration index. The cost
function and control law are updated until they converge to the
optimal values. The following convergence theorem is inspired by
the innovative work of [26,27].

Theorem 1. Suppose the condition

0r JnðxðtþhÞÞrθ

Z tþh

t
xðτÞTQxðτÞþuðxðτÞÞTRuðxðτÞÞ dτ ð8Þ

holds uniformly for some 0oθo1 and that 0rδJnrV0rωJn,
0rδr1, 1rωr1. The control law sequence {ui} and value
function sequence fVig are iteratively updated by (6) and (7). Then
the value function Vi approaches the optimal value function JnðxðtÞÞ
according to the inequalities

1þ δ�1

ð1þθ�1Þi

" #
JnðxðtÞÞrViðxðtÞÞr 1þ ω�1

ð1þθ�1Þi

" #
JnðxðtÞÞ: ð9Þ

Define V1ðxðtÞÞ ¼ limi-1ViðxðtÞÞ, then V1ðxðtÞÞ ¼ JnðxðtÞÞ.

Proof. The proof is given in the Appendix.
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