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a b s t r a c t

This paper investigates the problem of robust stabilization for a class of discrete-time stochastic neural
networks with randomly occurring discrete and distributed time-varying delays. More precisely, the
neuron activation functions are assumed to be more general and satisfy sector-like nonlinearities.
Moreover, the effects of both variation range and probability distribution of mixed time-delays are taken
into consideration in the proposed problem. The main objective of this paper is to design a state
feedback reliable H1 controller such that for all admissible uncertainties as well as actuator failure cases,
the resulting closed-loop form of considered neural network is robustly asymptotically stable while
satisfying a prescribed H1 performance constraint. Linear matrix inequality approach together with
proper construction of Lyapunov–Krasovskii functional is employed for obtaining delay dependent
sufficient conditions for the existence of robust reliable H1 controller. The obtained results are
formulated in terms of linear matrix inequalities (LMIs) which can be easily solved by using the
MATLAB LMI toolbox. Finally, a numerical example with simulation results is provided to illustrate the
effectiveness of the obtained control law and less conservativeness of the proposed results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Neural networks have been extensively studied because of their
potential applications in various fields such as signal processing,
pattern recognition, static image processing, associative memory
and combinatorial optimization [4,5,8]. Also, it is well known that
the achieved applications heavily depend on the dynamic behavior
such as stability and in particular, if a neural network is employed
to solve some optimization problems, it is highly desirable for the
neural networks to have a unique globally stable equilibrium point
[7]. Further, it is noted that neural network problems are exten-
sively studied with continuous-time cases. The discrete-time
neural networks become more important than the continuous-
time counterparts when implementing the neural networks in a
digital life [2]. On the other hand, the study on time delay systems
has become a topic of theoretical and practical importance since
time delays are inherent features of many physical process and
may lead to instability or significantly affect performances of the
corresponding system. It should be pointed that the time delays in
some neural networks often exist in a stochastic manner and its
probabilistic characteristic, such as Binomial distribution in case of

discrete-time system or normal distribution in case of continuous
time system, can regularly be obtained by using the statistical
methods. Also, the deviations and perturbations in parameters are
the main sources of uncertainty which are unavoidable due to
mainly modeling inaccuracies, variations of the operating point
and aging of the devices. More specifically, the connection weights
of the neurons are naturally dependent on certain resistance and
capacitance values that unavoidably bring uncertainties at some
stage in the parameter identification process. Therefore, it is
important to study robustness issue of the neural networks against
the uncertainties and random time delays.

It is well known that stability is one of the most important
qualitative properties of control systems, because unstable sys-
tems have no practical importance. It should be noted that every
control system must be primarily stable and then the other
qualitative properties can be studied [20–22]. Therefore, design
of control for neural networks is a subject of both practical and
theoretical importance. On the other side, feedback can modify the
natural dynamics of a system and reduce sensitivity to external
disturbances or that to changing parameters in the system itself
and stabilizes the system easily. Therefore, it is very useful to
design a state feedback controller such that the closed-loop form
of neural network can converge as fast as possible. Thus, the
robust stability and stabilization analysis for neural networks with
time delay and uncertainty has attracted much attention and lots
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of related results have been developed on this topic based on the
linear matrix inequality approach [6,9,10,15,23–25,31,32]. Wu and
Zeng [28] derived some sufficient conditions in terms of linear
matrix inequalities in order to achieve exponential stabilization of
a general class of memristive neural networks with time delays.
The global exponential stabilization results for a class of neural
networks with various activation functions and time-varying
distributed delays have been studied in [30]. It should be noted
that the aforementioned stabilization results are under a complete
reliability assumption that all control components of the systems
are in perfect working conditions. Because of the growing com-
plexity of automated control systems, various faults are likely to be
encountered, in particular faults from actuators and sensors [33].
A reliable control system possesses the ability to accommodate
system failures automatically and maintain overall system stability
and acceptable performance in the presence of component
failures [27]. Further, analysis and synthesis in H1 setting have
excellent advantages such as efficient disturbance rejection and
reduced sensitivity to uncertainties [16]. Recently, Sakthivel et al.
[17] derived a set of sufficient conditions for uncertain discrete-
time stochastic neural networks with time-varying delays via a
reliable H1 control law. Ahn [1] proposed a H1 weight learning
law for the asymptotic stability of switched Hopfield neural
networks.

Moreover, from the practical point of view, the stability
problem for stochastic discrete time neural networks has become
important and several related results have been reported on this
topic (see [12,13] and references therein). A robust delay-
distribution-dependent stochastic stability analysis has been stu-
died in [26] for a class of discrete-time stochastic delayed neural
networks with parameter uncertainties. Yue et al. [19] investigated
the global exponential stability in the mean square sense for a
class of linear discrete-time recurrent neural networks with
stochastic delay by using the Lyapunov–Krasovskii functional and
exploiting some new analysis techniques. The state estimation
problem for a class of discrete-time stochastic neural networks
with random delays has been reported in [3]. Meng et al. [29]
obtained a set of conditions for exponential stability of stochastic
neural networks with time-varying delays by using the Young
inequality, M-matrix technique and the semimartingale conver-
gence theorem. The exponential stability problem for a class of
uncertain stochastic neural networks with discrete time-varying
delays and unbounded distributed delays has been investigated in
[14]. More recently, Tang et al. [18] studied stability analysis
problem for a new class of discrete-time neural networks with
randomly occurring time delays due to the fact that the time delay
may be subject to random changes in environmental circum-
stances. To the best of our knowledge, no work has been reported
on robust stabilization for discrete-time stochastic neural net-
works with randomly occurring time delays. However, the pro-
blems of robust reliable H1 stabilization for discrete time neural
network with the discrete and distributed delay have not been
fully investigated, and there is still room open for further improve-
ments of the stability criteria.

Motivated by this consideration, in this paper we deal with the
problem of reliable H1 control for stochastic neural network with
randomly occurring discrete and distributed time-varying delays
in the discrete case. The main objective of this paper is to design a
reliable H1 controller such that the resulting closed loop form of
neural network is robustly asymptotically stable with a desired H1
performance level. Also, it is assumed that the neuron activation
functions satisfy sector-like nonlinearities. Moreover, the effects of
both variation range and probability distribution of time-delays
are taken into account in the proposed work. Based on a proper
Lyapunov–Krasovskii functional and LMI technique, a robust reli-
able H1 controller is designed for obtaining the required result.

The derived results are established in terms of LMI which can be
easily calculated by MATLAB-LMI toolbox.

This paper is organized as follows. The discrete-time stochastic
neural networks formulation is presented in Section 2. Section 3
proposes a reliable H1 control for stochastic uncertain neural
networks and robust asymptotic stabilization with known as well
as unknown actuator fault. In Section 4, the effectiveness of the
proposed control methodology is verified by numerical simula-
tions. The paper is concluded in Section 5.

2. Problem formulation and preliminaries

In this section, we start by introducing some notations and
basic results that will be used in this paper. The superscripts T and
ð�1Þ stand for matrix transposition and matrix inverse, respec-
tively; Rn�n denotes the n�n-dimensional Euclidean space; P40
means that P is real, symmetric and positive definite; I and
0 denote the identity and zero matrix with compatible dimen-
sions, respectively; diagf�g denotes the block-diagonal matrix; we
use an asterisk (n) to represent a term that is induced by
symmetry. Moreover, ðΩ;F ;PÞ is a probability space, where Ω is
the sample space, F is the σ-algebra of subsets of the sample space
and P is the probability measure on F [18]. E½�� stands for the
mathematical expectation operator with respect to the given
probability measure P. The notation J � J stands for the usual
l2ð0;1Þ norm. Matrices which are not explicitly stated are
assumed to be compatible for matrix multiplications.

Consider the following n-neuron discrete-time stochastic
neural network with discrete and distributed time varying delays
with output signal:

xðkþ1Þ ¼ CxðkÞþAf ðxðkÞÞþBgðxðk�τðkÞÞÞ

þD ∑
�1

i ¼ �dðkÞ
hðxðkþ iÞÞþEu f ðkÞ

þFvðkÞþσðk; xðkÞÞwðkÞ;

zðkÞ ¼ C1xðkÞ; ð1Þ
where k is the time; xðkÞARn is the state vector; f ðxðkÞÞ ¼
½f 1ðx1ðkÞÞ; f 2ðx2ðkÞÞ;…; f nðxnðkÞÞ�T , ðxðkÞÞ ¼ ½g1ðx1ðkÞÞ; g2ðx2ðkÞÞ;…;

gnðxnðkÞÞ�T and hðxðkÞÞ ¼ ½h1ðx1ðkÞÞ;h2ðx2ðkÞÞ;…;hnðxnðkÞÞ�T are the
neuron activation functions; u f ðkÞ is the control input of actuator
fault; z(k) is the output vector; vðkÞA l2ð0;1Þ is the disturbance
input vector; σð:; :Þ : R� Rn-Rn is the noise intensity function; w
(k) is a scalar Wiener process defined on a probability space
ðΩ; F;PÞ with

E½wðkÞ� ¼ 0; E½w2ðkÞ� ¼ 1; E½wðiÞwðjÞ� ¼ 0; ia j:

In model (1), AðkÞ ¼ AþΔAðkÞ, BðkÞ ¼ BþΔBðkÞ, C ðkÞ ¼ CþΔCðkÞ,
DðkÞ ¼DþΔDðkÞ, EðkÞ ¼ EþΔEðkÞ and F ðkÞ ¼ FþΔFðkÞ, where
C ¼ diagfcig; i¼ 1;2;…;n, is the diagonal matrix representing
the self-feedback term with jcijo1; the matrices A¼ ½aij�n�n;

B¼ ½bij�n�n;D¼ ½dij�n�n; E¼ ½eij�n�n and F ¼ ½f ij�n�n are known real
constant weight matrices and C1 is the output matrix. Further, the
matrices ΔCðkÞ; ΔAðkÞ; ΔBðkÞ; ΔDðkÞ; ΔEðkÞ and ΔFðkÞ represent
time varying parameter uncertainties which are defined as
follows:

½ΔCðkÞ ΔAðkÞ ΔBðkÞ ΔDðkÞ ΔEðkÞ ΔFðkÞ� ¼MHðkÞ½N1 N2 N3 N4 N5 N6�;

where N1; N2; N3; N4; N5; N6 and M are known constant
matrices of appropriate dimensions and H(k) are unknown time-
varying matrix with Lebesgue measurable elements bounded by
HT ðkÞHðkÞr I.

Remark 2.1. Comparing to the discrete-time neural networks
discussed in the literature [3,18], in this paper, without loss of
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