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a b s t r a c t

To reconstruct 3D face from single monocular image, this paper proposes an approach which comprises
three steps. First, a set of 3D facial features is recovered from 2D features extracted from the image. The
features are recovered by solving equations derived from a regularized scaled orthogonal projection. The
regularization is achieved by a global shape constraint exploiting a prior reference 3D facial shape.
Second, we warp a high-resolution reference 3D face, using both recovered 3D features and local shape
constraint at each model points. Last, realistic 3D face is obtained through texture synthesis. Compared
with existing approach, the proposed feature recovery method has higher accuracy, and it is robust to
facial pose variation appeared on the given image. Moreover, the model warping method based on local
shape constraints can warp a high-resolution reference 3D face using few 3D features more reasonably
and accurately. The proposed approach generates realistic 3D face with impressive visual effect.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

3D face reconstruction from single monocular image has received
considerable attention from researchers in the field of computer
vision and computer animation, and it has found its use in digital
entertainment like film and game production for decades of years.

Recently, 3D face reconstruction gives light to some newly
emerged applications such as human computer interaction [1,2],
electronically mediated communication [3] and public security
[4,5]. In [2], the authors developed an automatic face tracking and
lip reading system through a reconstructed 3D face avatar for
speech learning, emotional state monitoring and non-verbal
human computer interfaces design. A real-time facial tracking
system was developed in [3] to extract animation control para-
meters from videos. The system could translate these parameters
to 3D facial expression and then retarget the expressions to
reconstructed 3D faces for applications like teleconferencing. Also,
in visual surveillance [5], face cues were combined with gait cues
as biometrical features to achieve person identification.

Prior information is not indispensable for 3D reconstruction
from multiple input views [6], but it is necessary for monocular

reconstruction or pose estimation [7,8]. Specifically, monocular 3D
face reconstruction is a highly ill-posed problem, the reconstruction
process usually needs additional constraints derived from some
prior knowledge. The most common constraint used in face recon-
struction is shape constraint, which is usually concealed beneath 3D
sample faces. The most favorable and related work is the approaches
based on Morphable Models [9,10]. A Morphable Model refers to a
statistical model constructed by linearly combining a set of 3D
sample faces. The desired 3D face can be generated by tuning the
parameters (combining coefficient) of the model. The optimal
parameters are determined by fitting the Morphable Model to the
given image to match the 2D projection of the model to the face
appeared on the image. The sample face usually comprises tens of
thousands of 3D points. Matching the 2D projection of these 3D
points to image pixels incurs great computational cost. Therefore
Morphable Model approaches usually have low computational
efficiency. Furthermore, the shape constraint imposed by the sample
faces is a kind of global constraint. This means that the constraint
works simultaneously for all the points on the face model, and we
cannot adjust any local face region by tuning the model parameters.

Instead of using all 3D points, some researchers compute the
model parameters by fitting a few salient 3D facial feature points
to corresponding image feature points [11–14]. The feature-based
fitting speeds up the computation process enormously, but the
parameter estimation of the above-mentioned works is unsatis-
factory because it is based on alternating least square method
which is not derived from the conditions driving the objective
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function to reach its optimal value. In addition, these improve-
ments fail to consider some powerful methods such as sparse
representation [15,16] and novel distance metric learning [17–20],
which have been proved effective in solving linear approximation
problems. Most importantly, the shape constraint here is also
global shape constraint, and some approaches [13] can only
recover a few 3D feature points, 3D face model should be
generated by warping a high-resolution reference 3D face using
the feature points. Prevalent warping method is scattered data
interpolation [21] which relies on measuring Euclidean distances
directly between feature points and landmark model points
distributed on the model surface, therefore the warping is still
conducted in a global way and rarely achieves ideal result with few
feature points.

The aforementioned methods require a large number of sample
face models and a detailed and accurate point-wise correspon-
dence between all the models. This prevents these methods from
wider usage when the sample face models are unavailable. In
recent years, some researchers propose to regularize the 3D face
reconstruction using shape constraint derived from a prior face
model [22–24]. In [22], the authors detected the facial features
around eyes, mouth, eyebrow and contour of face from a given face
image, and adapted a generic 3D model into face specific 3D model
using geometric transformations. Similar work can be found in
[23], where a generic 3D face was projected onto image plane to fit
the 2D projection to the input face. Shape regularization is
implicitly used during the reconstruction procedure of these two
methods, among which [22] uses local translation to achieve
model fitting, and the depth information of the reconstructed 3D
face in [23] totally comes from the generic face. Hence, the result
of the regularization is not decent. In [24], the regularization was
explicitly introduced in the formulation of the problem, which
used the prior face model and albedo to extract illumination and
pose information for 3D reconstruction. However, the result varies
significantly depending on which prior model is used. This
approach also requires plenty of manual work to register the
image with the prior face.

To this end, we propose a novel approach to 3D face recon-
struction. Unlike Morphable Model approaches, we reconstruct
the unknown 3D face by fitting it directly to the given face image
through a scaled orthogonal projection. To deal with the ill-
posedness, we regularize the projection explicitly with a global
shape constraint constructed using a reference 3D face. To ensure
the efficiency, only few 3D facial features are fitted to a set of
image feature points. Then, we obtain high-resolution 3D face by
warping a reference 3D face model using the recovered 3D
features. Unlike previous approaches, the warping is based on
local shape constraint at each point of the face model[25]. The
local shape constraints convey human characteristics of local face
regions to the reconstructed 3D face. Realistic 3D face is generated
after texture mapping. Our approach has following advantages:
the feature recovery resorts to solving several equations, hence is
very fast. In addition, the recovered features are very close to the

optimal solution due to the global shape constraint, and the
recovery is not sensitive to facial pose on the given image. Last,
the warping based on local shape constraints is superior to
scattered data interpolation in that it can achieve better result
based on only few 3D features.

The rest part of this paper is organized as follows: In the next
section, we describe our 3D feature recovery algorithm based on
global shape constraint in detail. In Section 3, we discuss the high-
resolution 3D face reconstruction method, as well as the local
shape constraints. Texture mapping is introduced in Section 4.
Section 5 shows some experimental results, and we conclude this
paper in the last section.

2. 3D feature recovery

Twenty feature points of the input image are extracted by the
Active Appearance Model (AAM) [26] for model fitting. Fig. 1
shows some examples selected from Pointing face database [28].
The result is quite robust when the horizontal viewpoint varies
between 7451. Besides the 2D image features, we manually select
corresponding 20 features from a prior reference human face to
construct global shape constraint. See Fig. 2 for the reference 3D
face with reference features (marked by red dots). The reference
face reflects general facial characteristics and can be obtained by
averaging several laser scanned human faces. Now we describe
how to recover personalized 3D features from the image feature
points.

Let fp1; p2;…; png be the 2D feature points extracted from the
input image, where pi ¼ ½xi; yi�T , i¼1,…,n, and let fs1; s2;…; sng be
the corresponding 3D reference features. The unknown 3D feature
points that will be recovered are denoted as fs1;…; sng. The 2D
projection of fs1;…; sng should be close to fp1; p2;…;png as much as
possible. Without loss of generality, a scaled orthogonal projection
is used here, and the total errors

∑
n

i ¼ 1
Jpi�λðRsiþtÞJ2

should be small where λ is the scale factor, R is the rotation matrix
and t is the translation vector. We assume that t¼0 since we can
rewrite t as t ¼ Rs0, and reuse the notation si for the shifted siþs0.
Equivalently, we assume that fpig are centered. In addition, the
unknown 3D features should match reference human features,
meaning that ∑n

i ¼ 1‖si�si‖2 should be also small. Of course, fsig
are also centered. Taking the two concerns into account, we
consider the following minimization model for recovering the
unknown and personalized 3D features,

min
λ;fsig;R:RRT ¼ I

∑
n

i ¼ 1
Jpi�λRsi J2þα ∑

n

i ¼ 1
‖si�si‖2: ð1Þ

Fig. 1. Feature points extracted from images.
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