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a b s t r a c t

This paper is concerned with the problem of delay-dependent stability of delayed generalized
continuous neural networks, which include two classes of fundamental neural networks, i.e., static
neural networks and local field neural networks, as their special cases. It is assumed that the state delay
belongs to a given interval, which means that the lower bound of delay is not restricted to be zero. An
improved integral inequality lemma is proposed to handle the cross-product terms occurred in
derivative of constructed Lyapunov–Krasovskii functional. By using the new lemma and delay
partitioning method, some less conservative stability criteria are obtained in terms of LMIs. Numerical
examples are finally given to illustrate the effectiveness of the proposed method over the existing ones.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, neural networks have been widely applied in
various fields such as image processing, pattern recognition, asso-
ciative memory and combinatorial optimization [1–4]. During the
implementation of artificial neural networks, time delays naturally
occur due to the finite switching speed of amplifiers and might
cause oscillation, divergence, and even instability [5–7]. Therefore,
the stability of neural networks with time delay has become an
important topic. According to whether the neuron states of the
neurons are chosen as basic variables to depict the dynamical
evolution rule or not, neural networks can be classified as static
neural networks and local fields neural networks. These two models
can be transferred equivalently from one to the other under some
assumptions, but these assumptions cannot always be satisfied in
many applications [8]. That is, local field neural network models
and static neural network models are not always equivalent. So, it is
necessary and important to study them separately. There are many
results about the stability of local neural networks [9–35] and static
neural networks [36–39]. Recently, some researcher constructed a
unified model to combined these two system together [28,29]. For
example, in [29], the delay-dependent stability criteria for general-
ized neural networks with two delay components were studied by

using two delay-partitioning, free-weighting matrix and recipro-
cally convex combination method.

On the other hand, the stability criteria of neural networks are
classified into two categories, i.e., delay-dependent stability and
delay-independent ones. The delay-dependent stability conditions
received much attention, since they are usually less conservative
than delay-independent ones, especially when the time delays are
relatively small or it varies within an interval. The main aim of
delay-dependent stability criteria is to get maximum delay bounds
such that the designed networks are asymptotically stable for any
delay which is less than the maximum delay bounds. The reduction
of the conservativeness mainly affected by two aspects: choosing the
Lyapunov–Krasovskii functional and estimating its derivative. Var-
ious types of Lyapunov–Krasovskii functional have been constructed
to the stability of delayed neural networks, such as discretized
Lyapunov–Krasovskii functional [12], delay-partitioning Lyapunov–
Krasovskii functional [29], augmented Lyapunov–Krasovskii func-
tional [32,33], and so on. On the other hand, how to obtain the
upper bound of its derivative of the Lyapunov–Krasovskii functional
is also paly a key role in for deriving the less conservatism stability
criteria. For this reason, numerous techniques have been developed
for the delayed neural networks, such as free-weighting matrix [31],
Jensen inequality [8–39], convex combination technique [26], and so
on. However, these methods suffer some common shortcomings:
(1) the delay-interval divided into the same size [26,31], which may
lead to conservative in some degree. Furthermore, it can be
predicted that it will lead to less conservatism if we divide more
subintervals in the delay-partitioning Lyapunov–Krasovskii func-
tional. But the reduction of the conservatism tends to inapparent
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as increasing of the number of delay subintervals in some degree,
which leads to a large computational burden. (2) Jensen inequality
[8–39], which neglect some terms, was utilized to estimate the
upper bound of some derivative of Lyapunov–Krasovskii functional.
Thus, it is important and necessary to further study the stability of
neural networks with time-varying delays, which is one of the
motivation of this paper. It is worth to pointed out that, in practice, a
time-varying interval delay is often encountered, that is, the lower
bound is not restricted zero. Recently, some researchers studied
about the stability of neural networks with the interval time varying
delay [32–39].

Motivated by the above statement, this paper is concerned with
the improved stability criteria for general neural networks with
interval time-varying delay. Based on a modified Lyapunov–
Krasovskii functional and new integral inequality, some less
conservative delay-dependent stability criteria are developed in
terms of linear matrix inequalities. It is worth pointing out that all
of these criteria are applicable not only to the static neural
networks but also to the local neural networks. Two numerical
examples are provided to demonstrate the effectiveness and the
reduced conservatism of the proposed method.

The main contributions of this paper are summarized as
follows:

(1) Inspired by the work [28,29], a unified model, i.e., general
neural networks, which include static neural networks and local
neural networks, is considered in our work.

(2) The aim is to exploit new methods to achieve less con-
servative stability criteria. Different with the method considered in
[8–39], an improved inequality [41], which can obtain more
accurate upper bound than Jensen inequality for dealing with
the cross-term, is employed first in delayed neural networks.
Furthermore, a new inequality, which is introduced based on the
improved inequality [41] and the reciprocally convex approach
[40], is used to derive the stability criteria.

(3) For delay-partitioning method, different with the papers
considered in [29,31], two delay-partitioning method is employed
and the delay-interval does not divide into the same size, which
can get less conservative results.

Notations: Throughout this paper, n denotes the elements
below the main diagonal of a symmetric block matrix. I denotes
the identity matrix with appropriate dimensions, Rn denotes the n
dimensional Euclidean space, and Rm�n is the set of all m� n real
matrices, J � J refers to the Euclidean vector norm and the induced
matrix norm. For symmetric matrices A and B, the notation A4B
(respectively, AZB) means that the matrix A–B is positive definite
(respectively, nonnegative). diag{…} denotes the block diagonal
matrix.

2. Problem statement

The delayed neural network is described by

_yðtÞ ¼ �AyðtÞþW0gðW2yðtÞÞþW1gðW2yðt�hðtÞÞÞþ J;

yðtÞ ¼ ψðtÞA ½�h2;0� ð1Þ

where yðtÞ ¼ ½y1ðtÞ; y2ðtÞ;…; ynðtÞ�T ARn is the neuron state vector
associated with n neurons, A¼ diagfa1; a2;…; ang40, W0;W1 and
W2 are the connection weight matrix, gð�Þ ¼ ½g1ð�Þ; g2ð�Þ;…;

gnð�Þ�T ARn denotes the continuous activation function, J ¼
½J1; J2;…; Jn�T is an exogenous input vector. ψðtÞ is the initial
condition. h(t) denotes the time-varying delay and satisfies

h1rhðtÞrh2; _hðtÞrμ; ð2Þ

where h; μ are known constants.

The activation function gið�Þ satisfies

k�
i rgiðW2iξ1Þ�giðW2iξ2Þ

W2iξ1�W2iξ2
rkþ

i ðkþ
i 4k�

i Þ;
gið0Þ ¼ 0; ξ1; ξ2AR; ξ1aξ2; i¼ 1;2;…;n; ð3Þ
where k�

i ; kþ
i are some known constants.

From Brouwer's fixed-point theorem [9], there exists an equili-
brium point for the neural networks. Assume that yn ¼ ½yn

1; y
n

2;…; yn
n�

is an equilibrium point of system (1), and using the transformation
xð�Þ ¼ yð�Þ�yn, (1) can be converted to the following system:

_xðtÞ ¼ �AxðtÞþW0f ðW2xðtÞÞþW1f ðW2xðt�hðtÞÞÞ;
xðtÞ ¼ ψðtÞA ½�h2;0� ð4Þ
where f ðsÞ ¼ ½f 1ðsÞf 2ðsÞ…f nðsÞ�T and f ðW2xðtÞÞ ¼ gðW2xðtÞþynÞ�
gðW2xðtÞÞ. By (3), we obtain

k�
i r f iðW2iξ1Þ� f iðW2iξ2Þ

W2iξ1�W2iξ2
rkþ

i ;

f ið0Þ ¼ 0; ξ1; ξ2AR; ξ1aξ2; i¼ 1;2;…;n; ð5Þ
where k�

i ; kþ
i are some known constants.

Lemma 2.1 (Seuret and Gouaisbaut [41]). For a given matrix M40,
the following inequality holds for all continuously differentiable
function xðtÞ in ½a; b�ARn:

�ðb�aÞ
Z b

a
_xT ðsÞM _xðsÞ dsr�½xðbÞ�xðaÞ�TM½xðbÞ�xðaÞ��3ΩTMΩ

ð6Þ
where Ω¼ xðbÞþxðaÞ�ð2=ðb�aÞÞ R ba xðsÞ ds.

Lemma 2.2. For a given matrix R40, hmrhðtÞrhM, and any

appropriate dimension matrix X , which satisfies
R
n

X
R

" #
Z0. Then,

the following inequality holds for all continuously differentiable
function xðtÞ :

�ðhM�hmÞ
Z t�hm

t�hM

_xT ðsÞR _xðsÞ dsr�αT ðtÞ R X
n R

" #
αðtÞ

where αðtÞ ¼ ½αT1ðtÞ αT2ðtÞ αT3ðtÞ αT4ðtÞ�T , α1ðtÞ ¼ xðt�hmÞ�xðt�hðtÞÞ,
α2ðtÞ ¼ xðt�hmÞþxðt�hðtÞÞ�ð2=ðhðtÞ�hmÞÞ

R t�hm
t�hðtÞ xðsÞ ds,

α3ðtÞ ¼ xðt�hðtÞÞ�xðt�hMÞ,
α4ðtÞ ¼ xðt�hðtÞÞþxðt�hMÞ�ð2=ðhM�hðtÞÞÞ R t�hðtÞ

t�hM
xðsÞ ds, R ¼ ½R

n

0
3R�.

Proof. Based on Lemma 2.1, we have

�ðhM�hmÞ
Z t�hm

t�hM

_xT ðsÞR _xðsÞ ds

¼ �ðhM�hmÞ
Z t�hm

t�hðtÞ
_xT ðsÞR _xðsÞ ds�ðhM�hmÞ

Z t�hðtÞ
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If

R X
n R

" #
40;
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