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a b s t r a c t

This paper investigates the mechanisms of small parametrical perturbations in controlling chaos in a
class of non-autonomous piecewise smooth oscillators, which describe a large class of nonlinear
dynamical systems in the real world. The analytical expressions of two homoclinic orbits of unperturbed
piecewise smooth oscillators, which connect the same hyperbolic saddle point are solved analytically.
Firstly, when there are no small parametrical perturbations, by using Melnikov's approach, it is
rigorously proven that the homoclinic chaos in the Smale horseshoes sense exists when the system's
parameters are selected above the threshold for chaos occurrence. Secondly, under the small
parametrical perturbations, by using Melnikov's approach, a sufficient criterion is derived, serving as
designing the parameters of the control signal, i.e., amplitude and phase position. In the process of
computing Melnikov's functions, it is found that the expressions of Melnikov's functions could not be
solved analytically because the homoclinic orbits are highly complicated. To this end, a numerical
algorithm is proposed. Numerical simulations are presented to verify the theoretical results. The results
of this paper can be used to explore the underlying chaotic behaviors of the inertial neural
network model.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since the past decade, chaos control has aroused much interest
and its applications have widely been found in various fields such as
engineering, biology chemistry, physics and economics [1–4], and
so on [29]. One of the major chaos control schemes is the small
parametrical perturbations [5] and it belongs to non-feedback
control, in which the parameters are selected and modified accord-
ing to the properly designed control laws. Such a control scheme is
attractive since it is based on general properties of chaotic dynamics
and it is applicable to a variety of physical systems [6]. However,
due to the complexity and diversity of the chaotic systems, it is not
easy to find a general approach to control chaos.

It is well known that Melnikov's approach, one of the analytical
approaches, has been used to predict the onset of chaotic motions
in nonlinear dynamical systems. By measuring the distance

between the stable and unstable manifolds of dynamical systems,
Melnikov's approach is a powerful tool to find the occurrence of
chaos in Hamiltonian systems or near Hamiltonian systems. More-
over, it has been successfully applied to the analysis of chaos in
smooth systems [7]. The existence of a simple zero root of the
corresponding Melnikov's function implies the occurrence of
chaos in the sense of Smale horseshoes. Conversely, if some
control terms are added in the original system such that the
resultant Melnikov's functions do not have a simple zero root, the
chaos in the sense of Smale horseshoes will disappear in this
controlled system. In recent years, Melnikov's approach has been
used to analyze the control mechanisms of suppressing chaos in
the two-dimensional systems by many researchers [15–20,27].
Yagasaki et al. [15,16] investigated the chaos control for a pendu-
lum equation with two external excitations by using the feedback
control. It is shown that the chaotic dynamics resulting from
transversal intersection between the stable and unstable mani-
folds can be stabilized to the target saddle-type periodic orbit by
using OGY and SOGY methods. Brainman et al. [17] further studied
the chaos control for a pendulum equation with two external
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forces by using oscillatory perturbations and provided an effective
way to reduce chaos (i.e., by reducing the Lyapunov exponent)
or to eliminate chaos even in a deep chaotic state. Baker [15]
studied the control of chaotic damped driven pendulum (with one
external excitation) by using the OGY method, stabilizing an
unstable periodic orbit through a feedback mechanism which
periodically adjusts the damping parameter of the pendulum.
Yang et al. [19] considered the inhibition conditions of homoclinic
and heteroclinic chaos in the pendulum equation for primary and
subharmonic resonance. Recently, Yang et al. further investigated
the control of chaos in a pendulum equation with parametrical
excitations by using Melnikov's approach [20]. However, all the
objects in the above-mentioned literatures are based on a class of
smooth nonlinear systems.

There are many non-smooth systems in the real world, for
example, vibro-impact systems [8], collision dynamics [9], stick–
slip motions [10], mechanical systems with dry friction [11],
generalized Duffing oscillator with fractional-order deflection
[12], and so on. These systems often exhibit very complicated
dynamics, such as periodic-adding cascades [13], and non-smooth
bifurcations [7,14]. In particular, for a general class of nonlinear
impact oscillators, Du et al. [21] found the subharmonic bifurcation
by using Melnikov's approach. Awrejcewicz [22] discussed the
chaos prediction in non-smooth systems with sliding. Li et al. [23]
investigated the Type-II periodic motions for a general class of
nonlinear impact oscillators. Cveticanin et al. [12] analyzed the
occurrence of chaos by using Melnikov's approach, then applied
the delayed feedback control approach to the dynamical systems
with fractional-order deflection. According to the recent research
[28], in a neural network, there may exist some nerve cells which
should be modeled as a second-order nonlinear oscillator. To
understand the dynamical properties (including stability, bifurca-
tion and chaos) of such kinds of neural networks, it is the first step
to reveal the dynamics of an isolated nerve cell and seek some
useful control approaches.

Meanwhile, sinusoidal control signal is a kind of smooth signal
source, which has a high degree of accuracy and small waveform
distortion, which is easy to be implemented in practice. In
addition, based on the Fourier series theorem, almost all the
continuous and non-continuous periodic control signals can be
expressed in the form of Fourier series.

Combining all the above, for a generalized class of non-
autonomous second-order systems with fractional-order deflec-
tion, this paper serves the purpose of studying the role of chaos
control of small parametrical perturbations using sinusoidal con-
trol signal, thus helping to analyze the chaos control by other
kinds of signals. Two theorems for chaos occurrence and chaos
suppression are proposed using Melnikov's approach. A numerical
algorithm is presented for calculating the highly complicated
Melnikov's function. A threshold for chaos in such kinds of systems
is found and a region for choosing amplitude and phase position of
sinusoidal signal is also given. Finally, some numerical simulations
are presented to show the correctness of the theoretical results.

The outline of this paper is as follows. In Section 2, the
generalized Duffing type oscillator with fractional-order deflection
is described and a small sinusoidal parametrical perturbation is
introduced to the damping coefficient. In Section 3, the analytical
expressions of two homoclinic orbits of the unperturbed system
with fractional-order deflection which connect the same hyper-
bolic saddle point are solved in detail. The critical parameter curve
for the existence of chaos in the Smale horse sense is shown and
the regions in which the parameters in the sinusoidal signal for
controlling chaos to the stable periodic orbits is also found in
Section 4. In Section 5, the effectiveness of the proposed method
has also been confirmed with numerical simulations. We end our
investigation in Section 6 with a brief conclusion.

2. Description and analysis of the model

Consider the following generalized Duffing type oscillator with
fractional-order deflection:

€x�axþbxjxjα�1 ¼ εð�δ_xþγ cos ωtÞ; ð1Þ
where a40 is the linear feedback gain, b40 is the nonlinear
feedback gain, δ is the damping coefficient, ω and γ are the angular
frequency and amplitude of the periodic perturbation function,
respectively, which model the synthetic effect either from big
charges which produce strong anti-electronic force periodically or
from errors caused by machinery rotation in the generators. The
constant α41 is an integer or a fraction, and ε is assumed to be a
sufficiently small positive constant, i.e., 0oε5o1, such that the
right term in Eq. (1) can be considered as a perturbation term.

Remark 1. Some inertial neural network models [29–31] can be
seen as special cases of system (1).

Introducing a new variable y¼ _x, Eq. (1) can be transformed
into the following equivalent form:

_x¼ y;
_y¼ ax�bxjxjα�1þεð�δyþγ cos ωtÞ:

(
ð2Þ

In some specific range of parameters, system (2) can display
chaotic behaviors. In this paper, our motivation is to find the
threshold for chaos occurrence and suppress the chaotic behavior
to the stable periodic motions by adding a small parametrical
perturbation to the damping coefficient δ. As stated in the above,
we choose the sinusoidal signal as the parametric perturbation
source. After adding the perturbation term, the perturbed system
can be described by the following equation:

_x¼ y;
_y¼ ax�bxjxjα�1þεð�ðδþF sin ðωtþΦÞÞyþγ cos ωtÞ;

(
ð3Þ

where F is the amplitude, ω is the angular frequency same as that
in Eq. (2), and Φ is the phase position of the sinusoidal control
signal.

If ε¼ 0, Eq. (3) is considered as an unperturbed system and can
be written as

_x¼ y;
_y¼ ax�bxjxjα�1:

(
ð4Þ

Through the analysis of the equilibrium points and their
stability for system (4), it is shown that there exist three equili-
brium points for α41: C1;2 ¼ ð7 ða=bÞ1=α�1;0Þ being centers and
O¼ ð0;0Þ being a hyperbolic saddle as shown in Fig. 1(a). System
(4) is a Hamiltonian system with a Hamiltonian function:

Hðx; yÞ ¼ 1
2
y2�a

2
x2þ b

αþ1
x2 xjα�1;
�� ð5Þ

and the potential function can be described as

VðxÞ ¼ �a
2
x2þ b

αþ1
x2 xjα�1:
�� ð6Þ

The corresponding potential function VðxÞ is depicted in Fig. 1(b). In
spite of jxj appearing in Eq. (6), the function VðxÞ is of C2 class at x¼ 0
because it is approaching 0 like ð7xÞαþ1 tends to 0 as x-0. We call
the potential function VðxÞ as a double-well potential, and its two
wells being separated by a potential barrier. The orbits that emerge
from and converge to the hyperbolic saddle point O¼ ð0;0Þ are the
homoclinic orbits. Periodic orbits confined to a well evolve inside a
homoclinic orbit around one of the centers C1 and C2; those that cross
the potential barrier evolve outside the homoclinic orbits. The homo-
clinic orbits are separatrices between these two types of motions.
Hyperbolic saddle point O¼ ð0;0Þ is connected to itself by two
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