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a b s t r a c t

The problem of optimal switching and control of nonlinear switching systems with controlled
subsystems is investigated in this study where the mode sequence and the switching times between
the modes are unspecified. An approximate dynamic programming based method is developed which
provides a feedback solution for unspecified initial conditions and different final times. The convergence
of the proposed algorithm is proved. Versatility of the method and its performance are illustrated
through different numerical examples.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A switching system is characterized by a group of subsystems
with different dynamics of which one is active at each time instant.
Hence, in order to control such systems one needs a switching
schedule along with a control input to be applied. Examples of
switching systems can be found in dynamical systems in different
fields, from aerospace to chemical engineering [1–5]. There are a
few developments in this area [6–15], however, still there are many
open issues even for the case of linear subsystems with a quadratic
cost functions [7,16]. It should be noted that the optimal switching
problems are much more complicated compared to conventional
optimal control problems due to the intercoupling between the
effect of the applied continuous input and the discrete switching/
scheduling. In other words, the presence of the discrete events in the
system makes it very hard to find an optimal solution. Formulating
an optimal control problem as a function optimization problem, the
relation between conventional optimal control problems and optimal
switching problems is similar to the relation between a smooth
function optimization and a mixed integer programming, e.g., see
[15]. The restriction that some of the variables can only assume
integer values, in mixed integer programming, leads to different
challenges including the non-convexity of the problem. Such
challenges exist in optimal switching problems, as well.

Development in the field can be mainly classified into two
categories. In the first category, the sequence of active subsystems,
called mode sequence, is selected a priori [6–11], and the problem,
i.e., finding the switching instants between the modes, is solved
using nonlinear programming methods. In these papers, the
gradient of the cost with respect to the switching instants/points
is calculated. Afterward, the switching instants/points are adjusted
to find the local optimum. An iterative solution to a nonlinear
optimization problem is suggested in [10] and using the combina-
tion of this control approach with ideas from model predictive
control, the authors developed the so-called crawling window
optimal control scheme for the optimal switching problem. The
second category is based on discretizing the problem space in
order to deal with a finite number of options. Authors of [12]
utilized a direct search to evaluate the cost function for different
randomly selected switching time sequences among the finite
number of options to select the best sequence. In [13], state and
input spaces are discretized for calculation of the value function
for optimal switching through dynamic programming. In [14], a
genetic algorithm is used to find the optimal switching times
among the choices.

All the cited methods work only with a specific initial condition;
each time the initial condition is changed, a new set of computa-
tions needs to be performed to find the new optimal switching
instants. In order to extend the validity of the results to different
initial conditions within a pre-selected set, in [9] a solution is
found as the local optimum in the sense that it minimizes the
worst possible cost for all trajectories starting in the selected
initial states set.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.08.030
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.:+1 605 394 2200.
E-mail addresses: ali.heydari@sdsmt.edu (A. Heydari),

bala@mst.edu (S.N. Balakrishnan).

Neurocomputing 149 (2015) 1620–1630

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.08.030
http://dx.doi.org/10.1016/j.neucom.2014.08.030
http://dx.doi.org/10.1016/j.neucom.2014.08.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.030&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.030&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.030&domain=pdf
mailto:ali.heydari@sdsmt.edu
mailto:bala@mst.edu
http://dx.doi.org/10.1016/j.neucom.2014.08.030


In the past two decades, approximate dynamic programming
(ADP) has been shown to have a lot of promise in providing
comprehensive solutions to conventional optimal control pro-
blems in a feedback form [17–28]. ADP is usually carried out using
two neural network (NN) syntheses called adaptive critics (ACs)
[18–20]. In the heuristic dynamic programming (HDP) class with
ACs, one network, called the critic network, maps the input states
to output the cost and another network, called the actor network,
outputs the control with states of the system as its inputs [20,21].
Motivated by the potentials of ADP in conventional problems,
different ADP-based methods were developed for solving optimal
switching problems [29–33]. The authors of [29,30] developed a
switching method in which the number of functions subject to
approximation grows exponentially with the number of iterations
and an idea is suggested by the authors for eliminating some of
these functions. The authors of this study also investigated the
ADP-based approaches to optimal switching [31–33]. The devel-
opments in [31,32] are for optimal switching problems with fixed
mode sequence. In such systems, the mode sequence and the
number of switching are given and the problem is finding the
optimal switching time. The problem in the current study, how-
ever, is much more complicated due to the fact that the mode
sequence, the number of switching, and the switching times are all
unknown and subject to be calculated such that a cost function is
optimized. As compared with [33], the main difference is assuming
a controlled subsystem in the current study as opposed to auton-
omous subsystems investigated in [33]. Investigation of controlled
subsystems makes the problem more complicated due to the
intercoupling that exists between the effect of switching between
the modes and applying different control inputs once a mode is
active. Another challenge is both finding the switching schedule
and the continuous input in the problem subject to this study.

Considering this background, the contribution of this study is
presenting an ADP-based solution to switching problems with
controlled subsystems and free mode sequence. The idea is as
simple as learning the optimal cost-to-go and the optimal control
for different active modes. It is shown that having these functions
the optimal mode can be found in a feedback form, i.e., as a
function of the instantaneous state of the system and the remain-
ing time. An algorithm is developed which fits in the category of
HDP for learning the desired functions. The proof of convergence is
also provided. This method has several advantages over existing
developments in the field: (1) it provides global optimal switching
(subject to the assumed neural network structure) unlike the
nonlinear programming based methods [6–11] which could pro-
vide only local optimal solutions. (2) The order of active subsys-
tems and the number of switching are free, as opposed to simpler
problems of having a fixed mode sequence [6–14,31,32]. (3) The
neurocontroller determines an optimal solution for unspecified
initial conditions, without needing to retrain the networks. (4) Once
trained, the neurocontroller gives solution to any other final time as
well, as long as the new final time is not greater than the final time
for which the network is trained. (5) The switching is scheduled in
a feedback form, hence, it has the inherent robustness of feedback
solutions in disturbance rejection, unlike open loop developments
[6–9,11–15].

The closest development in the literature to the current study is
Ref. [30]. The differences which highlight the advantages and
disadvantages of each method, are fourfold. (a) Ref. [30] presents
an algorithm through which neural networks are utilized in
approximating smooth functions, which potentially leads to more
accurate approximations as compared with the algorithm pre-
sented in the current study which is based on approximating
possibly non-smooth functions. (b) The number of functions
needed to be learned at each training iteration and stored for
online control grows exponentially with the number of iterations,

in Ref. [30]. But, in the current study only one critic and as many
actors as the number of subsystems are required to be trained.
(c) The development in Ref. [30] admits a hard terminal constraint
on the state, while the method presented here admits soft
terminal constraints. (d) The algorithm proposed in Ref. [30] trains
the NNs for a single selected initial state vector, but, the current
study leads to a very versatile neurocontroller in terms of being
able to control different initial conditions and different final times,
without requiring the weights to be re-tuned.

The rest of this paper is organized as follows: the problem
formulation and the solution idea are presented in Section 2.
Approximations of the optimal cost-to-go and the optimal control
with neural networks are explained in Section 3. Numerical
analyses are given in Section 4 and conclusions from this study
are given in Section 5.

2. Problem formulation and solution idea

A switching systemwith nonlinear input-affine subsystems can
be represented by the set of M subsystems or modes modeled by:

_xðtÞ ¼ f vðtÞðxðtÞÞþgvðtÞðxðtÞÞuðtÞ; ð1Þ
where functions f v : ℝ

n-ℝn and gv : ℝ
n-ℝn�m, 8vAV� 1;f

2; …; Mg, represent the dynamics of the subsystems and are
assumed to be smooth. Integers n and m denote the dimensions
of state vector x and control vector u, respectively. The continuous
time is denoted with t and the initial and final times are denoted
with t0 and tf , respectively. Controlling the switching systems
requires a control input, u : ½t0; tf Þ-ℝm, and a switching schedule,
v : ½t0; tf Þ-V. The latter determines the active subsystem at time t
and the former provides the input to the active subsystem. The
optimal solution, however, is a solution that minimizes cost
function:

J ¼ ψðxðtf ÞÞþ
Z tf

t0
ðQ ðxðtÞÞþuðtÞTRuðtÞÞdt: ð2Þ

Convex positive semi-definite functions Q : ℝn-ℝ and
ψ : ℝn-ℝ penalize the states and RAℝm�m is a positive definite
matrix penalizing the control effort, in the selected cost function.
The problem is determining an input history uðtÞ and a switching
history vðtÞ such that cost function (2) is minimized, subject to
dynamics (1).

The selected approach in this study for solving the problem is
ADP [17–20], formulated with discrete-time dynamics. Therefore,
the dynamics and the cost function are discretized using a small
sampling time Δt,

xkþ1 ¼ f vk ðxkÞþgvk ðxkÞuk; kAK; vkAV; ð3Þ

J ¼ ψðxNÞþ ∑
N�1

k ¼ 0
ðQ ðxkÞþuT

kRukÞ ð4Þ

where N¼ ðtf �t0Þ=Δt , xk ¼ xðkΔtþt0Þ, uk ¼ uðkΔtþt0Þ, and
vk ¼ vðkΔtþt0Þ. Subscript k denotes the discrete time index and
K� f0;1;…;N�1g. If Euler integration is used for discretization,
one has f vðxÞ � xþΔtf vðxÞ, gvðxÞ �ΔtgvðxÞ, Q ðxÞ �ΔtQ ðxÞ, and
R�ΔtR.

Defining the cost-to-go as the incurred cost from current time k
and state xk to the final time N, denoted by Jk xkð Þ, one has:

JkðxkÞ ¼ ψðxNÞþ ∑
N�1

j ¼ k
ðQ ðxjÞþuT

j RujÞ: ð5Þ

From the form of the cost function, it directly follows:

JNðxNÞ ¼ ψðxNÞ;
Jk xkð Þ ¼Q xkð ÞþuT

kRukþ Jkþ1ðxkþ1Þ; 8kAK: ð6Þ
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