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a b s t r a c t

For a given set S of n real numbers, there are totally 2n�1 different subsets excluding the empty set. The
subset sum problem is defined as finding L subsets whose summation of subset elements are the L
smallest among all possible subsets. This problem has many applications in operations research and real
world. However, the problem is very computationally challenging. In this paper, a novel algorithm is
proposed to solve this problem. Firstly, the L smallest k-subsets sum problem, a special case and sub-
problem of the subset sum problem, is investigated. Given a positive integer k ðkrnÞ, k-subset means
the subset of k distinct elements of S. Obviously, there are totally n

k

� �
k-subsets. By expressing all these k-

subsets with a network, the L smallest k-subsets sum problem is converted to finding L shortest loopless
paths in this network. By combining the L shortest paths algorithm and the finite-time convergent
recurrent neural network, a new algorithm for the L smallest k-subsets sum problem is developed.
Finally, the solution to the subset sum problem is obtained by combining the solutions to these sub-
problems. And experimental results show that the proposed algorithm is very effective and efficient.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

For a given set S of n real numbers, a k-subset means a subset of
S containing k distinct elements, where kon is a positive integer
[1]. The number of k-subsets on n elements is therefore given
by the binomial coefficient ðnkÞ. For example, there are ð42Þ ¼ 6
2-subsets of f2;4;6;9g, namely f2;4g, f2;6g, f2;9g, f4;6g, f4;9g
and f6;9g. The values of summation of elements for these
2-subsets are 6, 8, 11, 10, 13 and 15 respectively. The L smallest
k-subsets sum problem is defined as finding L k-subsets whose
summation of subset elements are the L smallest among all
possible combinations. It is obvious that the three smallest
2-subsets of f2;4;6;9g are f2;4g, f2;6g and f4;6g.

It is obvious that the total number of distinct k-subsets on set S
of n elements is given by ∑n

k ¼ 1
n
k

� �¼ 2n�1. For the previous
example of f2;4;6;9g, these subsets are f2g, f4g, f6g, f9g, f2;4g,
f2;6g, f2;9g, f4;6g, f4;9g, f6;9g, f2;4;6g, f2;4;9g, f2;6;9g, f4;6;9g
and f2;4;6;9g. Then finding the L smallest subsets is known as a
subset sum problem. For example, the five smallest subsets of
f2;4;6;9g is f2g, f4g, f6g, f2;4g and f2;6g. The subset sum problem is
proved to be NP-complete [2].

The subset sum problem is very important in operations
research. In addition, the algorithm for solving the subset sum

problem could be applied to solve other real world problem, as
many real world problems can be formulated as a subset sum
problem. For example, in computer science, it is widely applied to
the optimal memory management in multiple programming [3]. In
the field of telecommunication, it is used in allocating wireless
resources to support multiple scalable video sequences [4]. For the
application in the embedded system, it is used in generating
application specific instructions for DSP applications to reduce
the required code size and increasing performance in embedded
DSP systems [5]. And in optimization, the subset sum problem can
also be studied as a special case of the Knapsack problem [6].

Due to the importance of the subset sum problem, many
algorithms have been proposed. Lagarias and Odlyzko proposed
a polynomial time algorithm for this problem in 1983 [7]. How-
ever, the algorithm is only suitable to the cases when the density
of the problem, ðdðsÞ ¼ n=log 2ðmaxisiÞÞ, is less than 1/n. In 1990,
Lobstein proved that there is no polynomial-time algorithm
solving the general subset sum problem [8]. Several heuristic
algorithms have been proposed such as the quantum computation
method [9], the space–time tradeoff method [10] and the penalty
function method [3]. However, these algorithms do not always
find a solution when one exists.

Since the subset sum problem can be thought of as the
extension of the L smallest k-subsets sum problem. The solution
to the subset sum problem can be found by solving a series of L
smallest k-subsets sum problems according to some strategies that
will be stated in detail in Section 5. And the time spent in solving
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the subset sum problem is equivalent to the summation of time
spent in solving these L smallest k-subsets sum problems. Then, it
is clear that the subset sum problem can be solved very efficiently
if there is a fast and exact algorithm for the L smallest k-subsets
sum problem. For this reason, the L smallest k-subsets sum
problem is first studied in detail in this paper. A specified structure
network was creatively proposed to express all the ðnkÞ k-subsets.
Then, based on the relationship between the ðnkÞ k-subsets and the
proposed network, finding the L smallest k-subsets sum is equiva-
lent to searching the L shortest loopless paths in this network.
Furthermore, by combining the L shortest paths algorithm and the
finite-time convergent recurrent neural network, a fast and exact
algorithm for the L smallest k-subsets sum problem is developed.
And finally, a complete algorithm to the subset sum problem is
proposed by combining the results of these k-subsets sum
problems.

The remainder of this paper is organized as follows. In Section 2,
the L smallest k-subsets sum problem formulation is presented
and the expression of the problem with a network is illustrated.
Then the procedure for finding the L shortest loopless paths in this
network is described in Section 3. In Section 4, by combining the L
shortest loopless paths algorithm with the finite-time convergent
recurrent neural network, a new algorithm is developed for the L
smallest k-subsets sum problem. In Section 5, a complete algo-
rithm to the subset sum problem by combining the results of these
k-subsets sum problems is illustrated. Next, in Section 6, experi-
mental results are given to verify the efficiency and effectiveness
of the proposed algorithms for the L smallest k-subsets sum
problem and the subset sum problem by comparing with the
dynamic programming based algorithm [17]. Finally, Section 7
concludes this paper.

2. Problem formulation and model description of the L
smallest k-subsets problem

To solve the L smallest k-subsets problem with optimization
method, an appropriate mathematical model is needed. It is
obvious that finding the L smallest k-subsets is equivalent to
determine the 1st, 2nd, 3rd, …, ðL�1Þth and Lth smallest k-subsets
step by step. Mathematically, the lth ð0o lrLÞ smallest k-subset
problem can be formulated as a function

xi ¼
1 if viAfthe lth smallest k�subsetg;
0 otherwise;

(
ð1Þ

for i¼1,…,n; where vARn is the given set, xAf0;1gn indicates the
elements of the given set belonging to the lth smallest k-subset,
and kAf1;…;n�1g. Fig. 1 shows the operation graphically.

When l¼1 and k is a nonnegative integer less than n, the above
operation is almost the same with the k-Winners-Take-All (kWTA)
operation [11]. The only difference is that k WTA operation finds k
largest elements from n candidates instead of the smallest ones.
However, solving the L smallest k-subsets sum problem is much
more complicated than solving the k WTA problem. On one hand,
when the ðl�1Þth smallest k-subset is already known as x̂l�1, the
ðlÞth smallest k-subset can be obtained by solving the following
integer optimization:

minimize vTx;

subject to eTx¼ k

xa x̂l�1 ðC1Þ
vTxZvT x̂l�1 ðC2Þ
xiAf0;1g; i¼ 1;2;…;n: ð2Þ

where v¼ ½v1;…; vn�T ARn; e¼ ½1;…;1�T ARn; x¼ ½x1;…; xn�T ARn, l
is an integer greater than one and k is a nonnegative integer less

than n. Compared with the optimization formulation of k WTA
problem [12], conditions (C1) and (C2) are added in finding the
ðlÞth smallest k-subset, which increases the difficulty greatly. In
addition, it is proved in [12] that condition xiAf0;1g in solving k
WTA can be relaxed to xiA ½0;1� . However, this integer condition
in optimization problem (2) cannot be relaxed. On the other hand,
for the k WTA problem, only one round of optimization should be
solved. However, for the L smallest k-subsets sum problem, totally
L round of optimization (2) should be solved one by one from l¼1
to l¼L.

Since integer optimization (2) is difficult to solve due to the
inequality condition (C1) and the integer restriction for x, it is not
wise to solve the original problem by integer programming. Here,
a specific network structure is created to represent all k-subsets of
set S. As shown in Fig. 2, each network has one source node nstart (i.
e. start point), one sink node nend (i.e. ending point) and several
intermediate nodes such as n1:1 and n2:1. There are some links
connecting different nodes, and for each link one weight is
assigned. For example, in Fig. 2(b), the weight for the link
connecting nodes n1:1 and n2:1 is four. For the network of Fig. 2
(b), it can be easily enumerated that there are totally six different
paths from the source node to the sink node. Each path represents
a 2-subset by the weights of the links constituting this path. For
instance, path nstart-n1:1-n2:1-nend represents subset f2;4g. And
all these six paths represent all 2-subsets of set f2;4;6;9g. When
constructing a network for representing k-subsets of n elements,
the network is composed of a source node, a sink node and k
layers of intermediate nodes. For all the layers ði¼ 1;…; kÞ, it has
ðn�kþ1Þ intermediate nodes. It can be proved that the upper
bound for the number of nodes is nk. For the first intermediate
layer ði¼ 1Þ, these ðn�kþ1Þ nodes are connected with the source
node. And the weights on these links are assigned by the ðn�kþ1Þ
smallest elements of the given set. For the intermediate layers
ði¼ 2;…; kÞ, connect these nodes with the ði�1Þth layer nodes
properly and assigned the ith to the ði�n�k�1Þth smallest
elements of the given set to these links appropriately. For the last
intermediate layer ði¼ kÞ, these ðn�kþ1Þ nodes are connected
with the sink node. And the weights on these links are all assigned
by 0. By applying these procedures, a network representing all k-
subsets of n elements can be constructed. Therefore, it is clear that
finding the L smallest k-subsets sum is equivalent to searching L
shortest paths in a network.

3. Finding L shortest paths in a network

Finding L shortest paths in a network is a well-known optimi-
zation problem. Many real world applications such as transporta-
tion system can be formulated by this problem [14]. There are
several algorithms available for finding L shortest paths in a
network, among which the algorithm proposed by Yen is one of
the most efficient in term of the number of operations and the
number of memory addresses [13]. Here the algorithm is adapted
to find L shortest paths in the specific structure network. The first

Fig. 1. Diagram of finding the lth ð0o lrLÞ smallest k-subset operation.
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