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a b s t r a c t

We propose a new supervised classification technique which considers the ease of access of unlabeled
instances to training classes through an underlying network. The training data set is used to construct a
network, in which instances (nodes) represent the states that a random walker visits, and the network
link structure is modified by performing a link weight composition between the unlabeled instance bias
and the initial network link weights. Different from traditional classification heuristics, which divide the
training data set into subspaces, the proposed scheme uses random walk limiting probabilities to
measure the limiting state transitions among training nodes. An unlabeled instance receives the label of
the class that is most easily reached by the random walker, that is, the limiting transition to that class is
large. Simulation results suggest that the proposed technique is comparable to some well-known
classification techniques.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Supervised machine learning comprises the construction of a
predicting model by using information extracted from a training
data set. The constructed model defines decision borders that are
used to classify unlabeled data [1]. An unlabeled instance is
classified depending on its relative position to the decision
borders. Due to its importance in various real applications, many
classification techniques have been developed, such as Linear
Discriminant Analysis (LDA) [1], Neural Networks [2], k-Nearest
Neighbors (k NN) [3], Naive-Bayes [4], Support Vector Machines
(SVM) [5] and Decision Trees [6]. These traditional classification
techniques divide the data space according to physical features of
the training data (similarity, distance, or distribution). In this way,
many intrinsic and semantic relations among data items are
ignored, for example topological structures and pattern formation.

On the other hand, the usage of an underlying network can do
take into account the previously mentioned relationships among
data, that is, topological structures and pattern formation. Net-
works are powerful tools for complex system modeling and for
data representation. By using this representation, the structure,
dynamics and functions of the system that it represents are

unified. Also besides describing the interaction among nodes
(structure) and the evolution of such interactions (dynamics), it
also reveals how “structure þ dynamics” affects the overall
function of the network [7]. Due to these characteristics, the usage
of network-based methods in learning tasks has been increasing
over the past years and has become a very active research area
with a myriad of applications, such as semi-supervised learning
[8,9], clustering [10–12], regression [13], feature selection [14], and
dimensionality reduction [15], among others.

Another relevant advantage when using networks in learning
tasks is that it can perform quite different classification heuristics.
Traditional classification techniques divide the data space into
subspaces, each one representing a data class. These subspaces are
not overlapped in the case of crisp classification, but they can be
slightly overlapped in the case of fuzzy classification. In either way,
strong twisting or largely overlapped subspaces are not permitted.
However, when using networks many are the classification
approaches. For instance, the authors in [16] consider that unlabeled
instances belong to a sub-network (class) which results in the lowest
modularity value [17] after connecting it to a network constructed
from the unlabeled set. In their approach, the classification process is
performed by considering the connectivity pattern of the training
data. In a recent study [18], the authors propose the use of node
centrality for data classification. Their technique is capable of
classifying multiple observations where each pattern is represented
by a group of invariant transformations. The classifier must predict
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the pattern this group belongs to. In this approach, the classification
is conducted by analyzing how central or how important is a test
instance to each class.

Here, we propose a new network-based classification technique
which considers the ease of access of unlabeled instances to
training classes. Different from the previous works, the proposed
technique uses the dynamical process measure called the random
walk limiting probabilities. Limiting probabilities are applied to
random walk processes to measure the limiting state transitions
through an underlying network [19]. In the proposed scheme, the
training data set is used to construct the network, in which
instances (nodes) represent the states that a random walker visits
during the process. An unlabeled instance is considered to be
belonging to the class that is most easily reached, that is, the
limiting transition probability for a random walker to that class,
after the insertion of the unlabeled instance link bias into the
training network, is large. As a consequence of the dynamical
processes, both local and global relationships among nodes are
taken into account.

This paper is organized as follows: Section 2 describes the
model for the supervised classification technique, and Section 3
analyses the algorithm complexity. In Section 4, simulation results
and comparisons to others techniques are presented. Finally,
Section 5 concludes the paper.

2. Technique description

The general idea of the proposed technique is explained as
follows. Random walk theory can be understood in terms of
Markov chains [19]. A Markov chain is formed by a sequence
states visited by a random walker in which the probability to visit
a given state is independent of past visits given that the current
state is known. The probability of moving from one state to
another is called the transition probability. It can be shown that,
under some conditions, after an infinite number of transitions, the
random walk process reaches the stationary state, or the limiting
probabilities, which is independent of the initial state [20]. In this

situation, states that have larger transition probabilities to other
states result in larger limiting probabilities, that is, the random
walk has some preference to visit them. In other words, by
representing the states and transition probabilities as network
nodes and link weights, respectively, we can say that nodes which
are better linked to the other nodes or have stronger link weights
result in larger limiting probabilities. In this case, the random
walker prefers to visit some nodes in the network in detriment of
others, that is, some nodes are easily accessed than others. To
classify a given unlabeled instance, a set of labeled instances is
considered as network nodes, or the state space set, that is, each
node (labeled instance) is a possible state for the random walker.
This network of labeled nodes is modified by a specific link weight
composition which takes into account the bias information of the
unlabeled instance to be classified. The bias information changes
the network structure by affecting the link weights among nodes,
resulting in a structure such that the most easily reached labeled
nodes represent the class label of the unlabeled instance after the
calculation of the limiting probabilities in the biased network. The
mathematical formulation is as follows.

The classification problem concerned within this paper
requires a given labeled data set, X ðlÞ ¼ fxðlÞ

i ; i¼ 1;…;ng, where
each instance is described by q attributes xðlÞ

i ¼ fxi1; xi2;…; xiqg. Each
instance in this set has a single assigned label lAf1;2;…;Lg. It is
also given an unlabeled data set, X ðuÞ ¼ fxðuÞ

i ; i¼ 1;…;mg, contain-
ing instances that will be assigned to labels after classification. The
proposed technique can then be divided into two phases, training
and classification, as it is described next.

Training phase: In the training phase, a weighted and undir-
ected network N ¼ fV; Eg is constructed without self-loops. Nodes
represent data instances, V ¼X ðlÞ, and link weights represent
similarities among instances, E ¼ ½W ij�; i; j¼ 1;…;n. The similarity
between any pair of instances xðlÞ

i and xðlÞ
j is denoted by wij. The

network similarity matrix W ¼ fwijg can be calculated by using any
distance function. Specifically, we use the Euclidean distance in all
experiments in this paper. At the end of this phase, we get a
network N called the training network. The flowchart in Fig. 1
depicts the training phase.

Classification phase: To classify an unlabeled instance xðuÞ, a
weight vector S ¼ ½s1; s2;…; sn� is calculated containing the link
weights between xðuÞ and all other nodes xðlÞ

i . That is, node xðuÞ is
inserted into the training network N by calculating the link
weights to all other nodes into this network, and is subsequently
removed from N . Then, an asymmetric and n� n modified
similarity matrix Ŵ is constructed by the following composition:

Ŵ ¼WþϵŜ ; ð1Þ

where ϵ is a non-negative parameter and Ŝ is the following n� n
matrix:

Ŝ ¼

Sð1Þ
Sð2Þ
⋮

SðnÞ

2
66664

3
77775
:

It can be observed in Eq. (1) that the weight biases of the
unlabeled instance xðuÞ, encoded in matrix Ŝ , are applied over all
links W of the training network N , that is, the weight of each link
is linearly added up with its corresponding weight bias. The idea
behind this operation is that the distance between any pair of
nodes is modified due to the new weights of network routes
introduced by the insertion of the link biases from the unlabeled
instance links. The higher the similarity between the unlabeled
instance and a node, say node i, the more strengthened the
connections from all other nodes to node i are after this operation.
The parameter ϵ controls the influence of the weight biases in theFig. 1. Flowchart for the training phase.
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