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a b s t r a c t

In this paper, we propose an optimal online control method for discrete-time nonlinear Markov jump
systems (MJSs). The Markov chain and the weighted sum technique are introduced to convert the
Markov jumping problem into an optimal control problem. We then use adaptive dynamic program-
ming (ADP) to accomplish online learning and control with specific learning algorithm and detailed
stability analysis, including the convergence of the performance index function sequence and the
existence of the corresponding admissible control input. Neural networks are applied to implement
this ADP approach and online learning method is used to tune the weights of the critic and the action
networks. Two different numerical examples are given to demonstrate the effectiveness of the
proposed method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive dynamic programming (ADP) has been widely recog-
nized as one of the “core methodologies” to achieve optimal
control in stochastic process in a general case to achieve intelligent
control [1,2]. Taking the advantage of approximating the solutions
of optimal control problems in equivalent to solve the Hamilton–
Jacobi–Bellman (HJB) equation, this method has attracted signifi-
cantly increasing attention in recent years. Extensive efforts and
promising results in both theoretical research and engineering
applications have been achieved over the past decades. Among
these achievements, we highlight Al-Tamimi et al. [3], Abu-Khalaf
et al. [4], Wei and Liu [5–7], Lewis and Vamvoudakis [8,9], He et al.
[10–12], Zhang et al. [13–15], Si et al. [16–18], He and Jagannathan
[19–21], Seiffertt et al. [22], Zhong et al. [23,24] and Lin et al.
[25,26] from the theoretical perspective that are closely related to
the research presented in this paper. These achievements cover a
large variety of problems, including system stability, convergence
proof, optimal control, and state prediction. Interested readers can
refer to the two important handbooks [27,28] on ADP for many
other successful architectures, algorithms and challenging engi-
neering applications.

On the other hand, there has been extensive interest in the stability
analysis and controller design of theMarkov jump systems (MJSs) over
the past decades due to its powerful modeling capability for power
systems [29,30], aerospace systems [31], and manufacturing systems
[32–34]. In practice, random parameters change may exist in these
systems resulting from sudden environmental disturbances, abrupt
changes of the operating point, or component failure or repairs. These
make the systems that cannot be easily modeled. The studies of MJSs
build a bridge between these architecture systems and the theoretical
analysis. However, many of the research in this field completely
depend on the accuracy system functions [35–39], which narrows
the range of application of this powerful modeling method. How to
solve the problems of MJSs without the knowledge of system
functions is a challenging topic.

This paper proposes an optimal control method for a class
of discrete-time nonlinear Markov jump systems without the
requirement of system functions by using ADP technique. Note
that, generally, ADP can be categorized into three typical struc-
tures which are heuristic dynamic programming (HDP), dual
heuristic dynamic programming (DHP), and globalized dual heur-
istic dynamic programming (GDHP). This paper is focused on the
HDP technique for stabilizing the MJSs. The main contribution of
this work is to introduce the ADP method into the field of MJSs by
transforming the MJSs control problem with multi-subsystem into
a single-objective optimal control problem. Moreover, unlike the
traditional method to solve the MJSs problem, such as linear
matrix inequality, our approach based on ADP technique is an
adaptive and learning process, which means when the parameters
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of the systems are changed, our approach can still find the optimal
controller adaptively. Besides, the convergence of the proposed
ADP approach is provided in detail. Two numerical examples are
presented to verify the validity of the proposed method.

The rest of this paper is organized as follows. In Section 2, we
formulate the MJSs control problem analyzed in this paper. The
performance index function for the whole MJSs is obtained by
combining the performance index functions for the subsystems
using Markov chain and weighted sum technique. The ADP method
for discrete-time nonlinear MJSs is established in Section 3. Section 4
presents the detailed convergence analysis of the performance index
function and the existence of the admissible control for the proposed
optimal control scheme. Neural networks are used in Section 5 to
implement this ADP scheme. The online learning method is also
applied in this section to tune the weights of the critic and the action
networks. In Section 6, two numerical examples, including one with
two jumping modes and one with four jumping modes, are pre-
sented to demonstrate the effectiveness of the proposed approach.
Finally, Section 7 concludes the paper.

2. Problem statement

The discrete-time nonlinear MJSs can be described by the
following equation:

xðkþ1Þ ¼ FðxðkÞ;uðkÞ;θðkÞÞ; kZ0 ð1Þ
where xðkÞARn is the system state with the initial state xð0Þ
and uðkÞARm is the control vector. FðxðkÞ;uðkÞ;θðkÞÞ denotes
the unknown system function and Fð0;0;θðkÞÞ ¼ 0. We assume
that FðxðkÞ;uðkÞ;θðkÞÞ is Lipschitz continuous. fθðkÞ; kZ0g is the
discrete-time Markov chain, which refers to the active mode of the
whole system in each step and takes values in a finite set
S¼ f1;2;…; lg, where l is the number of the subsystems. The
elements in the Markov chain are given by

pij ¼ Probðθðkþ1Þ ¼ jjθðkÞ ¼ iÞ ð2Þ

which denotes the transition probability that the next active
subsystem is the jth one given that the current active subsystem
is the ith one. Hence, we know pijZ0; 8 i; jAS and ∑l

j ¼ 1pij ¼ 1.
Define the performance index function for each subsystem as

follows:

JðxðkÞ;θðkÞÞ ¼ ∑
1

t ¼ k
αt�kUðxðtÞ;uðtÞ;θðtÞÞ ð3Þ

where the utility function UðxðtÞ;uðtÞ;θðtÞÞ ¼ Q ðxðtÞ;θðtÞÞþuðtÞT
RðθðtÞÞuðtÞ is positive definite, i.e., UðxðtÞ;uðtÞ;θðtÞÞ ¼ 0, if and
only if xðtÞ ¼ 0 and uðtÞ ¼ 0; otherwise UðxðtÞ;uðtÞ;θðtÞÞ40. And,
0oαr1 is the discount factor.

In the following part, we use FiðxðkÞ;uðkÞÞ, JiðxðkÞÞ, UiðxðkÞ;uðkÞÞ,
QiðxðkÞÞ, Ri to represent the notation FðxðkÞ;uðkÞ, θðkÞÞ, JðxðkÞ, θðkÞÞ,
UðxðkÞ;uðkÞ;θðkÞÞ, Q ðxðkÞ;θðkÞÞ, RðθðkÞÞ to simplify the presentation.

For optimal control problem, it is desired to find an optimal
control unðkÞ to minimize the performance index function for
system (1). However, due to the existence of the transition prob-
abilities (2), we cannot just add all the performance index func-
tions of the subsystems to act as that of the whole MJSs. Here, we
use

JIðxðkÞÞ ¼ p11J1ðxðkÞÞþp12 J2ðxðkÞÞþ⋯þp1l JlðxðkÞÞ
JIIðxðkÞÞ ¼ p21 J1ðxðkÞÞþp22 J2ðxðkÞÞþ⋯þp2l JlðxðkÞÞ
⋮
JLðxðkÞÞ ¼ pl1J1ðxðkÞÞþpl2 J2ðxðkÞÞþ⋯þpll JlðxðkÞÞ

8>>>><
>>>>:

ð4Þ

to reconstruct the performance index function according to the
Markov chain (2). Then, by using the weighted sum technique, the

final performance index function for MJSs is obtained as

JðxðkÞÞ ¼ω1JIðxðkÞÞþω2JIIðxðkÞÞþ⋯þωlJLðxðkÞÞ ð5Þ
where ωi40 is the weight vector and ∑l

i ¼ 1ωi ¼ 1.
Hence, the control vector u(k) needs to be found to minimize

the performance index function (5) and make the MJSs achieve
stability. Note that this control law must not only stabilize the
system on the compact set ΩARn, but also guarantee that (5) is
finite, which is called admissible control.

Definition 1. A control law is said to be an admissible control with
respect to (5) on Ω, if u(k) is continuous on Ω and can stabilize
system (1) for all xð0ÞAΩ, uðkÞ ¼ 0 as xðkÞ ¼ 0, and for 8xðkÞ, JðxðkÞÞ
is finite.

3. ADP approach for optimal control problem of nonlinear
MJSs

In this section, the ADP approach for discrete-time nonlinear
MJSs is presented based on the performance index function (5).

Eq. (5) can be expanded as

JðxðkÞÞ ¼ω1JIðxðkÞÞþω2JIIðxðkÞÞþ⋯þωiJLðxðkÞÞ
¼ ðω1p11þω2p21þ⋯þωlpl1ÞJ1ðxðkÞÞ
þðω1p12þω2p22þ⋯þωlpl2ÞJ2ðxðkÞÞ
þ⋯þðω1p1lþω2p2lþ⋯þωlπllÞJlðxðkÞÞ
¼D1J1ðxðkÞÞþD2J2ðxðkÞÞþ⋯þDlJlðxðkÞÞ

¼ ∑
l

i ¼ 1
∑
1

t ¼ k
ðαt�kDiUiðxðtÞ;uðtÞÞÞ ð6Þ

where Di ¼∑l
j ¼ 1ωjpji40. Hence, Eq. (6) is positive definite, i.e.,

the above performance index function serves as a Lyapunov
function.

The equivalent equation of (6) is given by the Bellman equa-
tion:

JðxðkÞÞ ¼ ∑
l

i ¼ 1
ðDiUiðxðkÞ;uðkÞÞÞþ ∑

l

i ¼ 1
∑
1

t ¼ kþ1
αt�kDiUiðxðtÞ;uðtÞÞ

¼ ∑
l

i ¼ 1
ðDiUiðxðkÞ;uðkÞÞÞþα ∑

l

i ¼ 1
∑
1

t ¼ kþ1
αt�ðkþ1ÞDiUiðxðtÞ;uðtÞÞ

¼DTUðxðkÞ;uðkÞÞþαJðxðkþ1ÞÞ ð7Þ
where

D¼ ðD1;D2;…;DlÞT ,
UðxðkÞ;uðkÞÞ ¼ ðU1ðxðkÞ;uðkÞÞ;U2ðxðkÞ;uðkÞÞ;…;UlðxðkÞ;uðkÞÞÞT .
Depending on Bellman's optimality principle, the optimal

performance index function JnðxðkÞÞ is time invariant and satisfies
the discrete-time HJB equation:

JnðxðkÞÞ ¼min
uðkÞ

fDTUðxðkÞ;uðkÞÞþαJnðxðkþ1ÞÞg ð8Þ

Besides, the optimal control unðkÞ satisfies the first-order
necessary condition, which is obtained by gradient of the right-
hand side of (8) with respect to u(k) as

∂ðDTUðxðkÞ;uðkÞÞÞ
∂uðkÞ þα

∂xðkþ1Þ
∂uðkÞ

� �T∂Jnðxðkþ1ÞÞ
∂xðkþ1Þ ¼ 0 ð9Þ

Therefore, the optimal control policy can be expressed as

unðkÞ ¼ �α
2

∑
m

i ¼ 1
DiRi

 !�1
∂FiðxðkÞ;uðkÞÞ

∂uðkÞ

� �T∂Jnðxðkþ1ÞÞ
∂xðkþ1Þ ð10Þ

where JnðxðkÞÞ is solved in the following HJB equation:

JnðxðkÞÞ ¼ ∑
m

i ¼ 1
DiQiðxðkÞÞþ

α2

4
∂FiðxðkÞ;uðkÞÞ

∂uðkÞ

� �T∂Jnðxðkþ1ÞÞ
∂xðkþ1Þ

 !T
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