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a b s t r a c t

As an important branch of neural network, extreme learning machines (ELMs) have attracted wide
interests in the fields of pattern classification and regression estimation. However, when facing learning
problems with multi-dimensional outputs, named multi-dimensional regression, the conventional ELMs
could not generally get satisfactory results because it is incapable of exploiting the relatedness among
outputs efficiently. To solve this problem, a new regularized ELM is firstly proposed in this paper by
introducing a hyper-spherical loss function as regularizer. As the regularization formwith this loss function
cannot be solved directly, an solution with iterative procedure is presented. For improving the learning
performance, the algorithm proposed above is further reformulated to identify the inner grouping
structure hidden in outputs by assuming that the grouping structure is determined by different linear
combinations of a small number of latent basis neurons. This is achieved as a mixed integer programming,
and finally an alternating minimization method is presented to solve this problem. Experiments on two
multi-dimensional data sets, a toy problem and a real-life dynamical cylindrical vibration data set, are
conducted, and the results demonstrate the effectiveness of the proposed algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multi-dimensional regression problem, also called the multi-
input multi-output (MIMO) regression, is very common to con-
front for many different engineering fields, for example, system
identification and state estimation [1,2]. In this problem, there are
two variables xARd and yARmðm41Þ which are connected by a
functional dependency or a probability density function. Applying
multi-dimensional regression to nonlinear black-box modeling
helps us to predict multiple outputs efficiently in many situations
where the output variables are coupled [3].

Traditionally, the multi-dimensional regression problems are
separately divided into total k single-dimensional problems, and
then integrate every individual regressor to obtain a final MIMO
model. This method is simple and effective. However, if there exist
common or related parameters for various output variables, estab-
lishing a MIMO regressor simultaneously on all outputs may get
more robust and explicable results. To simultaneously predict multi-
dimensional output, hierarchical least squares algorithm [4] and
multi-innovation stochastic gradient optimization [5] are proposed.
Many classic methods, like support vector machine (SVM), have also
been developed from single dimensional form to multi-dimensional

regression scenario [6]. Specifically, SVM and other optimization
algorithms can be integrated to optimize MIMO model based on the
RBF network [7]. However, the corresponding price is increasing
model complexity and human intervention. Due to its innate
structure, multi-layer neural network can predict multiple outputs
simultaneously where each output servers as an output node. In this
sense, extreme learning machine (ELM) is a competitively good
solution for such tasks on account of better generalization perfor-
mance as well as faster learning speed and least human intervention.
ELM provides a unified learning platform for single-hidden-layer
feedforward neural network (SLFN) [8]. Its main idea is that the
hidden layer of SLFNs need not be tuned. Unlike conventional neural
networks, ELMs randomly initialize the input weights and hidden
layer biases, and finally determine the output weights via a simple
matrix inversion procedure [9]. Obviously, it is important to improve
the precision of ELM for multi-dimensional regression.

While ELMs have proved their success in solving regression and
multi-class classification problems [10], ELMs are also improved to
solve multi-dimensional regression problems. To reach this goal,
some researches try to develop ELM according to MIMO's require-
ments. Du et al. [11] try to enforce the sparsity of ELM in MIMO
model in order to overcome the over-fitting problem. Specifically,
he proposed a two-stage locally regularized method to establish
MIMO model. Wang et al. [12] utilized an improved multi-
response sparse regression method to construct an efficient MIMO
ELM from a pre-generated model pool, and then proposed an
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constructive model selection method for multi-output ELM [13].
On the other hand, because of ELM's intrinsic structure for MIMO
modeling, one way is to improve the generalization performance
of ELM. Considering the existence of the acceptable minimal
training error, regularization on output weights is important in
particular if the observations do not comprise many training
samples [14]. Huang et al. [14] also proved that ELM can be
linearly extended to SVM with less optimization constraints and
simpler random kernel. Following this basic idea, various regular-
ization forms such as LASSO and Tikhonov regularization [15–17]
have recently been introduced to improve the generalization
ability and decrease the complexity of ELM model. Note that
although regularization technique could help us to establish more
effective regressor for the available data, it will cause bias. There-
fore, for MIMO problems, regularization technique should be used
according to the specific requirement of applications.

In many practical applications, MIMO modeling problems have a
large number of outputs. For examples, dynamical load identifica-
tion generally needs to predict dozens of load simultaneously. In
our experiment which will be shown in Section 5, we need to
establish more than 100 regressors on the total of 144 measuring
points. In this scenario, the knowledge among outputs could help us
to improve the generalization performance of MIMO model besides
the information among input variables. Therefore, the relatedness
between outputs should be detected, and exploiting the inner
structure among outputs will play a part vital role. Although the
classical ELM can work in MIMO mode, it is incapable to draw
support from outputs. Similarly, if regularization of ELM are directly
applied to solving multi-dimensional regression problems with
high output dimension, the results tend to be unsatisfactory. The
main reason is that in these formulations, the loss functions with
insensitive zone [14] or equation type [18,16] do not have multi-
dimensional form, and will not suffer an equal penalty for each
output. As the MIMO form of ELM [11–13] mentioned above is
dedicated to choosing effective ELM model from the sparsity
perspective, they are not involved in exploiting the inner structure
among outputs, especially when facing a large number of outputs.

In this paper, aiming at multi-dimensional regression paradigm
which has high output dimension, we focus on two important
issues. First, we need to find an efficient method to establish
regressor for each output using the domain knowledge among all
outputs. Second, as multiple outputs have inner structure, e.g.,
some outputs are more related than others, we need techniques to
determine this structure for better generalization performance.
Guided by the above idea, a new regularized ELM for multi-
dimensional regression is firstly proposed in this paper by intro-
ducing a hyper-spherical loss function as regularizer. This loss
function estimates the errors in hyper-spherical form which is
applicable to multi-dimensional regression. So it will allow us to
equally treat every output. On account of the adopted loss
function, this new ELM algorithm cannot be solved like SVMs or
other conventional methods. So an solution with iterative proce-
dure is also developed. In order to determine the inner structure, a
new grouping learning algorithm of this regularized ELM is
proposed. This algorithm starts from the assumption that the
grouping structure is determined by different linear combinations
of a small number of latent basis neurons. After reformulating as a
mixed integer programming problem, an alternating minimization
method is presented to solve this problem. This grouping learning
algorithm can also be performed as a model selection method
which could determine the compact network structure, and
remarkably reduce computational complexity than the traditional
regularized ELM and improve the numerical stability for multi-
dimensional regression. Experiments on a toy regression data as
well as a real-life dynamical cylindrical vibration data set show the
benefit of the proposed algorithm. To our best knowledge, this

research serves as the first attempt to study the inner grouping
structure theoretically in generalization of ELM for multi-
dimensional regression problem.

The rest of this paper is organized as follows. In Section 2, a
brief review to ELM is given. In Section 3, both a new regularized
form of ELM and its training algorithm are provided. Section 4
further proposes a grouping learning algorithm for the proposed
ELM. Section 5 is devoted to computer experiments, followed by a
conclusion of the paper in the last section.

2. Brief introduction of ELM

As studied by [19], the theoretical foundations of ELM are that
SLFN with at most N hidden neurons can learn N distinct samples
with zero error by adopting any bounded nonlinear activation
function. Following this concept, Huang et al. [9] proposed ELM
algorithm whose main procedure is determining the output
weights by a matrix pseudo-inversion computation after initializ-
ing the input weights and hidden layer biases randomly. As proved
empirically by many researchers [20], ELM has very high learning
speed, simple network structure and good generalization perfor-
mance. Here a brief summary of ELM is provided.

Given a set of i:i:d training samples fðx1; y1Þ;…; ðxN ; yNÞg �
Rd � Rm, standard SLFNs with ~N hidden nodes are mathematically
formulated as

∑
~N

i ¼ 1
βigiðxjÞ ¼ ∑

~N

i ¼ 1
βigiðwi � xjþbiÞ ¼ oj; j¼ 1;…;N ð1Þ

where g(x) is the activation function, wi ¼ ½wi1;wi2;…;wid�T is the
input weight vector connecting input nodes and the ith hidden
node, βi ¼ ½βi1;βi2;…;βim�T is the output weight vector connecting
output nodes and the ith hidden node, bi is the bias of the ith
hidden node. Huang et al. [19] have rigorously proved that then for
N arbitrary distinct samples and any ðwi; biÞ randomly chosen from
Rd � R according to any continuous probability distribution, the
hidden layer output matrix H of a standard SLFN with N hidden
nodes is invertible and JHβ�TJ ¼ 0 with probability one if the
activation function g : R↦R is infinitely differentiable in any
interval. Then given ðwi; biÞ, training a SLFN equals finding a
least-squares solution of the following equation [9]:

Hβ¼ Y ð2Þ
where

Hðw1;…;w ~N ; b1;…; b ~N ; x1;…; x ~N Þ

¼
gðw1 � x1þb1Þ ⋯ gðw ~N � x1þb ~N Þ

⋮ ⋯ ⋮
gðw1 � xNþb1Þ ⋯ gðw ~N � xNþb ~N Þ

2
64

3
75
N� ~N

β¼ ½β1;…;β ~N �T

Y¼ ½y1;…; yN �T

Considering most cases that ~N⪡N, β cannot be computed through
the direct matrix inversion. Therefore, Huang et al. [9] calculated
the smallest norm least-squares solution of Eq. (2):

β̂ ¼H†T ð3Þ
where H† is the Moore–Penrose generalized inverse of matrix
H [2]. Based on the above analysis, Huang [3] proposed ELM whose
framework can be stated as follows [9]:

Step 1 : Randomly generate input weight and bias ðwi; biÞ,
i¼ 1;…; ~N .

Step 2 : Compute the hidden layer output matrix H.
Step 3 : Compute the output weight β̂ ¼H†T.
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