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a b s t r a c t

Traditional manifold learning algorithms, such as Locally Linear Embedding, Isomap and Laplacian
Eigenmap, only provide the embedding results of training samples. Although many extensions of these
approaches try to solve the out-of-sample extension problem, their computations cannot avoid eigen-
decomposition of dense matrices which is expensive in both time and memory. To solve this problem,
spectral regression (SR) casts the problem of learning an embedding function into a regression
framework. Motivated by the effectiveness of extreme learning machine (ELM), in this paper, we solve
the out-of-sample extension problem by seeking an embedding function in ELM feature space. An
extreme spectral regression (ESR) algorithm is proposed to speed up kernel-based SR (KSR) further. In
addition, it is proved that ESR is an approximation of KSR. Similar to SR, the proposed ESR algorithm can
be performed in supervised, unsupervised and semi-supervised situation. Experimental results on
classification and semi-supervised classification demonstrate the effectiveness and efficiency of our
algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dimensionality reduction has been a key problem in many fields of
information processing, such as machine learning, data mining,
information retrieval, and pattern recognition. Practical algorithms
usually behave badly when faced with many unnecessary features. A
common way to attempt to resolve this problem is to use dimension-
ality reduction (DR) techniques, which include unsupervised, super-
vised and semi-supervised DR due to different assumptions about the
data distribution or the availability of the data labeling.

Principal component analysis (PCA) [1] is one of the most
popular unsupervised DR techniques, which finds a linear map-
ping by maximizing the projected variances. If the data is
embedded in a linear subspace, PCA is guaranteed to discover
the dimensionality of the subspace and produces a compact
representation. In order to handle the data sampled from a
nonlinear low dimensional manifold, many manifold learning
techniques, such as ISOMAP [2], Locally Linear Embedding (LLE)
[3] and Laplacian Eigenmap [4] have been proposed which reduce
the dimensionality of a fixed training set in a way that can
maximally preserve certain inter-point relationships. Given the
data of each class have a Gaussian distribution, Linear discriminant
analysis (LDA) first constructs the between-class scatter and the
within-class scatter matrices by virtue of labeled data, then simulta-
neously maximizes the between-class scatter and minimizes the

within-class scatter to obtain a projection. Alternatively, marginal
Fisher analysis (MFA) [5] and local discriminant embedding (LDE) [6]
exploit the assumption that the data of each class spread as a
submanifold, and seek a discriminant embedding over these submani-
folds. Semi-supervised DR, such as semi-supervised discriminant
analysis (SDA) [7], utilizes partially labeled data while preserving
the intrinsic geometric structures of the remaining. Generally,
linear DR methods mentioned above can be kernelized into non-
linear ones. As shown in [8–10], the kernelized versions can
achieve significant improvements.

Although some modified methods explicitly require an embed-
ding function either linear or in the Reproducing Kernel Hilbert
Space (RKHS) when minimizing the objective function [11,12], the
computation of these methods involves eigen-decomposition of
dense matrices which is expensive in both time and memory. It is
almost infeasible to apply these approaches on large data sets.
Spectral regression (SR), which is fundamentally based on regres-
sion and spectral graph analysis [13–16], casts the problem of
learning an embedding function into a regression framework. In
this method, an affinity graph over both labeled and unlabeled
points is first constructed to discover the intrinsic discriminant
structure in the data. The responses for both labeled and unlabeled
points are then obtained by means of this graph. Finally, the
ordinary regression is applied for learning the embedding func-
tion. Thus, SR avoids eigen-decomposition of dense matrices.
Moreover, it can be performed either in supervised, unsupervised
or semi-supervised situation.

Kernel SR (KSR) is the kernelized version of SR in the reprodu-
cing kernel Hilbert space (RKHS) into which data points are
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mapped. For large data sets, the computation of KSR involves an
inversion of the kernel matrix of the training data, which is time-
consuming in applications. To solve this problem, motivated by the
fast learning speed of extreme learning machine (ELM), we solve
the out-of-sample extension problem by seeking an embedding
function in ELM feature space instead of RKHS. Thus, the final
regression problem can be solved effectively by the ELM algorithm,
which uses L2 regularization to solve the over-fitting problem. The
regularization methods for solving the regression problem of ELM
have been studied extensively. Miche et al. in [17,18] proposed a
double regularized ELM algorithm, which uses a cascade of two
regularization penalties: first a L1 penalty to rank the neurons of
the hidden layer, followed by a L2 penalty to prune the network
accordingly. In this paper, we propose an extreme spectral regres-
sion (ESR) algorithm, which is based on ELM only using L2
regularization for simplicity. In this case, it is proved that ESR is
an approximation of KSR by discretizing the embedding functions
in RKHS. Experimental results on classification and semi-
supervised classification demonstrate the effectiveness and effi-
ciency of our algorithm.

The paper is structured as follows. In Section 2, we briefly
introduce the extreme learning machine model. Our extreme
spectral regression algorithm is introduced in Section 3. In
Section 4, we provide a theoretical and computational complexity
analysis of our algorithm respectively. The experimental results
are presented in Section 5. Finally, we give the related conclusions
in Section 6. In order to avoid confusion, we give a list of the main
notations used in this paper in Table 1.

2. Extreme learning machine

The output function of ELM for generalized SLFNs in the case of
one output node is

f L xð Þ ¼ ∑
L

i ¼ 1
βihi xð Þ ¼ h xð Þβ; ð1Þ

where β¼ β1; … ; βL
� �T is the vector of the output weights

between the hidden layer of L nodes and the output node, and
h xð Þ ¼ h1 xð Þ; …;hL xð Þ� �

is the output (row) vector of the hidden
layer with respect to the input x. In fact, h xð Þ maps the data from
the d-dimensional input space to the L-dimensional hidden-layer
feature space (ELM feature space) H. ELM is to minimize the
training error as well as the norm of the output weights [18–20]

minβ
C
2
JHβ�T J2 þ 1

2
JβJ2; ð2Þ

where C is a tradeoff parameter between the complexity and
fitness of the decision function and H is the hidden-layer output

matrix denoted by

H ¼

h x1ð Þ
h x2ð Þ
⋮

h xnð Þ

2
66664

3
77775¼

h1 x1ð Þ … hL x1ð Þ
h1 x2ð Þ … hL x2ð Þ
⋮ ⋮ ⋮

h1 xnð Þ … hL xnð Þ

2
66664

3
77775: ð3Þ

Similar to support vector machine (SVM), to minimize the
norm of the output weights JβJ is actually to maximize the
distance of the separating margins of the two different classes in
the ELM feature space: 2=JβJ , which actually controls the com-
plexity of the function in the ELM feature space.

For completeness, we briefly introduce the multiclass classifiers
of ELM.

(1) Multiclass classifier with single output: ELM can approximate
any target continuous functions and the output of the ELM
classifier h xð Þβ can be as close to the class labels in the
corresponding regions as possible. Thus the classification
problem for ELM with a single-output node can be formulated
as [21]:

Minimize : LELM ¼ 1
2JβJ

2þC
2 ∑

n

i ¼ 1
ε2i

Subject to : h xið Þβ¼ ti� i; i¼ 1;…;n: ð4Þ

For multiclass problems, among all the multiclass labels, the
predicted class label of a given testing sample is the closest to
the output of ELM classifier.

(2) Multiclass classifier with multioutputs: If ELM has multioutput
nodes, an m-class classifier is corresponding to m output
nodes. If the original class label is l, the expected output vector

of the m output nodes is ti ¼ ½0;…;0;1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{l

;0;…;0�T . That is, the
lth element of ti ¼ ½ti;1;…; ti;m�T is one and the rest of the
elements are zero. The classification problem for ELM with
multioutput nodes is [21]:

Minimize : LELM ¼ 1
2JβJ

2þC
2 ∑

n

i ¼ 1
Jεi J2

Subject to : h xið Þβ¼ tiT �εi
T ; i¼ 1;…;n: ð5Þ

where εi ¼ ½εi1;…; εim�T is the training error vector of the m output
nodes with respect to the training sample xi.

If a feature mapping h xð Þ is unknown to users, the output
function of ELM classifier is

f xð Þ ¼ h xð ÞHT I
C
þHHT

� ��1

T ¼ k x; x1ð Þ;…; k x; xnð Þ� � I
C
þM

� ��1

T ;

ð6Þ
where M ¼HHT , mi;j ¼ k xi; xj

� �
and k x; yð Þ is a positive semi-

definite kernel function. If a feature mapping h xð Þ is known, we
have h xð Þ ¼ G a1; b1; xð Þ;…;GðaL; bL; xÞ

� �
, where G a; b; xð Þ is a non-

linear piecewise continuous function satisfying ELM universal
approximation capability theorems [22–26] and ai; bið Þ	 
L

i ¼ 1 are
randomly generated according to any continuous probability
distribution. The output function of ELM classifier is

f xð Þ ¼ h xð ÞHT I
C
þHHT

� ��1

T ; ð7Þ

or

f xð Þ ¼ h xð Þ I
C
þHTH

� ��1

HTT ; ð8Þ

Table 1
Notations.

Notations Descriptions

ℝd the input d-dimensional Euclidean space
n the number of total training data points
m the number of classes that the samples belong to
X X ¼ x1;…:; xn½ �Aℝd�n is the training data matrix
k x; yð Þ Kernel function of variables x and y
K Kernel matrix K ¼ k xi ; xj

� �	 

Aℝn�n

J J norm in the Hilbert space ℋ
H the hidden-layer output matrix
β the vector of the output weights between the hidden layer of L

nodes and the output node
L the graph Laplacian matrix
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