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a b s t r a c t

Traditional kernel-based semi-supervised learning (SSL) algorithms usually have high computational
complexity. Moreover, few SSL methods have been proposed to utilize both the manifold of unlabeled
data and pairwise constraints effectively. In this paper, we first construct a unified SSL framework to
combine the manifold regularization and the terms based on the pairwise constraints for semi-
supervised classification tasks. Motivated by the effectiveness of extreme learning machine (ELM), we
further utilize ELM to approximate the established kernel-based SSL framework. Finally, we present a
fast semi-supervised extreme learning machine with manifold regularization and pairwise constraints.
Experimental results on a variety of real-world data sets demonstrate the effectiveness of the proposed
fast SSL algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many practical applications, one often faces a lack of
sufficient labeled data. One way to address the problem of the
small-size samples is to utilize a large amount of unlabeled data by
semi-supervised learning methods. A large number of SSL
approaches have been proposed over the years, such as self-
training, co-training, transductive support vector machines
(TSVMs) and graph-based methods. Among them, kernel functions
are often used to enhance the performance of SSL. However, SSL
methods based on kernel functions generally have high computa-
tional complexity. How to make these SSL methods applicable to
large-scale data sets becomes a very challenging task. Recently,
Extreme learning machine (ELM) has recently become an inter-
esting topic because of its fast learning capacity [1–9]. Thus, it is
natural to introduce it into kernel-based SSL methods, which not
only provides an approximate method for traditional SSL methods,
but also extends ELM to the semi-supervised scenario.

Now, many regularization frameworks have been designed by
using manifold regularization terms based on the manifold
assumption, that is, the samples in the local region should have
similar labels. Belkin et al. [10] first proposed a general manifold
regularization (MR) framework developed in the setting of Repro-
ducing Kernel Hilbert Spaces (RKHS). To measure the smoothness
of functions on data manifolds, the MR framework added an

additional penalty term to the traditional regularization. By
exploiting the intrinsic structure of data, such a term can enhance
the smoothness of decision functions and further improve the
performance of learning algorithms. Based on the MR framework,
the Discriminatively Regularization Least Square Classification
(DRLSC) method built the penalty term on manifolds by integrat-
ing both discriminative and geometrical information in each local
region [11]. These frameworks can handle semi-supervised learn-
ing problems well, but they do not utilize pairwise constraints
effectively. Moreover, the high computational complexities of
algorithms from these frameworks limit the application of these
methods.

Recently, some semi-supervised ELM methods have been
proposed to improve the original ELM model. Liu et al. [12]
developed a semi-supervised ELM (SELM) model by introducing
the manifold regularization term. Li et al. [13] proposed a new
regularization classification method (NRCM) by constructing the
intra-class and inter-class regularization terms. Although these
methods can utilize unlabeled data, they did not exploit the
information from pairwise constraints of unlabeled data, which
could be available in practical applications. Moreover, the com-
plexity of these models was not controlled, that is, the penalty
norm of the function in the ambient space was not incorporated
into these models. Undoubtedly, this could have a bad influence on
the performance of algorithms.

In this paper, we are particularly interested in how to incorpo-
rate pairwise constraints to the traditional manifold regularization
framework and how to enhance the effectiveness of traditional
kernel-based learning algorithms. We first construct a unified SSL
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framework to combine the manifold assumption and the pairwise
constraints. Then we approximately solve the proposed model by
virtue of output functions in the ELM feature space and present a
fast semi-supervised learning algorithm based on ELM (SSL-ELM).

The remainder of this paper is organized as follows: Section 2
introduces the regularization technology. Section 3 presents an
SSL framework in detail and proposes a fast SSL algorithm based
on ELM. Experimental results on a synthetic data set and several
real-world data sets are reported in Sections 4 and Section 5 is
conclusions.

2. Extreme learning machine

The output function of ELM for generalized SLFNs in the case of
one output node is

f L xð Þ ¼ ∑
L

i ¼ 1
βihi xð Þ ¼ h xð Þβ ð1Þ

where β¼ ½ β1; … ;βL�T is the vector of the output weights
between the hidden layer of L nodes and the output node, and
h xð Þ ¼ ½ h1 xð Þ; …;hL xð Þ� is the output (row) vector of the hidden
layer with respect to the input x. In fact, h xð Þ maps the data from
the d-dimensional input space to the L-dimensional hidden-layer
feature space (ELM feature space) H. ELM is to minimize the
training error as well as the norm of the output weights [14,15]

minβ
C
2
JHβ�T J2F þ 1

2
JβJ2 ð2Þ

where J U JF denotes the Frobenius norm and H is the hidden-layer
output matrix denoted by

H ¼

h x1ð Þ
h x2ð Þ
⋮

h xnð Þ

2
66664

3
77775¼

h1 x1ð Þ … hL x1ð Þ
h1 x2ð Þ … hL x2ð Þ

⋮ ⋮ ⋮
h1 xnð Þ … hL xnð Þ

2
66664

3
77775: ð3Þ

Similar to SVM, to minimize the norm of the output weights
JβJ is actually to maximize the distance of the separating margins
of the two different classes in the ELM feature space: 2=JβJ ,
which actually controls the complexity of the function in the
ambient space.

3. The SSL framework with the manifold assumption
and pairwise constraints

3.1. Manifold and pairwise constraints regularization

In graph-based SSL methods, the manifold assumption is
widely used. There is a probability distribution P on X�ℝ
according to which examples are generated for function learning.
Labeled examples are (x, y) pairs generated from P. Unlabeled
examples are simply xAX drawn according to the marginal
distribution Px of P. Previous studies have shown that there may
be a connection between the conditional and margin distributions.
Thus, knowledge of the margin Px can be exploited for better
function learning. Specifically, if two points x1, x2AX are close in
the intrinsic geometry of Px, then the conditional probabilities
Pðyjx1Þ and Pðyjx2Þ are similar, where yA {1, …, m} is the class
label. Thus, the conditional probability distribution varies
smoothly along the geodesics in the intrinsic geometry of Px. This
is usually referred to as manifold assumption [16].

For a Mercer kernel K: X�X-ℝ, there is an associated RKHS
ℋK of functions X-ℝ with the corresponding norm J Jℋ. Given a
set of l labeled examples fðxi; yiÞgli ¼ 1 and a set of u unlabeled
examples fxjglþu

j ¼ lþ1, In the manifold regularization framework, an

unknown function is estimated by minimizing [10]

f n ¼ argmin
f Aℋ

1
l
∑
l

i ¼ 1
V xi; yi; f
� �þγA J f J

2
ℋþγI J f J

2
I

" #
ð4Þ

where V is some loss function, i.e., the squared loss ðyi� f ðxiÞÞ2 for
RLS or the hinge loss function max ½0;1�yif ðxiÞ� for SVM, J f J2ℋ is
the RKHS norm penalty and represents the complexity of the
function in RKHS HK and J f J2I is a smoothness penalty corre-
sponding to the sample probability distribution. γA controls the
complexity of the function in the ambient space and γ1 controls
the complexity of the function in the intrinsic geometry of sample
probability distribution.

When we consider the case that the support of Px is a compact
submanifold ℳ�ℝd, a natural choice for J f J I is

R
xAℳ J∇ℳf J2

dPxðxÞ [14], where ∇ℳ is the gradient of f along the manifold and
the integral is taken over the distribution Px. In most applications
the marginal Px is unknown. Therefore we must attempt to get
empirical estimates of Px and J U J I . In order to model the
geometrical structure ofℳ, we construct a nearest-neighbor graph
G and define a weighted matrix W on the graph. Define LG ¼
D�W , where D is a diagonal matrix whose entries are column
(or row) sums of W, that is Dii ¼∑lþu

j ¼ 1wij. LG is called graph
Laplacian [14]. By spectral graph theory, J f J2I can be discretely
approximated as follows:

J f 2I J ¼
1

2 uþ lð Þ2
∑
lþu

i;j ¼ 1
J f xið Þ� f xj

� �
J2wij

¼ 1

uþ lð Þ2
∑
lþu

i ¼ 1
f xið Þ2Dii� ∑

lþu

i ¼ 1;j ¼ 1
f xið Þf xj

� �
wij

 !

¼ 1

uþ lð Þ2
f TDf � f TWf
� �

¼ 1

uþ lð Þ2
f TLGf ; ð5Þ

where the normalizing coefficient 1=ðlþuÞ2 is the natural scale
factor for the empirical estimate of the Laplace operator.

In order to utilize pairwise constraints, we first construct two
weighted matrices based on pairwise constraints as follows:

Wm;ij ¼
1 if xi; xjAML

0 Otherwise

�
ð6Þ

and

Wc;ij ¼
1 if x xi; xjACL

0 Otherwise

�
ð7Þ

where ML represents the set of the must-link pairwise constraints
and CL represents the set of the cannot-link pairwise constraints.
Thus, we actually construct the intra-class graph Gm and the inter-
class graph Gc. Then, we define a measure to characterize the
intra-class compactness from the intra-class graph

Sm ¼ 1
2

∑
lþu

i;j ¼ 1
J f xið Þ� f xj

� �
J2Wm;ij

¼ f TLmf ; ð8Þ
where Lm is the Laplacian matrix of Gm. Likewise, the measure of
characterizing the inter-class separability from the inter-class
graph can be defined as follows:

Sc ¼
1
2

∑
lþu

i;j ¼ 1
J f xið Þ� f xj

� �
J2Wc;ij

¼ f TLcf ; ð9Þ
where Lc is the Laplacian matrix of Gm.

Here, a small Sm implies that every class has a small scatter.
Meanwhile, a large Sc implies that different classes scatter well.
Thus, we can introduce these regularization terms to our SSL
framework.
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