
Binary/ternary extreme learning machines

Mark van Heeswijk n, Yoan Miche
Aalto University School of Science, Department of Information and Computer Science, P.O. Box 15400, FI-00076 Aalto, Finland

a r t i c l e i n f o

Article history:
Received 28 August 2013
Received in revised form
17 December 2013
Accepted 19 January 2014
Available online 28 September 2014

Keywords:
Extreme learning machine
Hidden layer initialization
Intrinsic plasticity
Random projection
Binary features
Ternary features

a b s t r a c t

In this paper, a new hidden layer construction method for Extreme Learning Machines (ELMs) is
investigated, aimed at generating a diverse set of weights. The paper proposes two new ELM variants:
Binary ELM, with a weight initialization scheme based on f0;1g–weights; and Ternary ELM, with a
weight initialization scheme based on f�1;0;1g–weights. The motivation behind this approach is that
these features will be from very different subspaces and therefore each neuron extracts more diverse
information from the inputs than neurons with completely random features traditionally used in ELM.
Therefore, ideally it should lead to better ELMs. Experiments show that indeed ELMs with ternary
weights generally achieve lower test error. Furthermore, the experiments show that the Binary and
Ternary ELMs are more robust to irrelevant and noisy variables and are in fact performing implicit
variable selection. Finally, since only the weight generation scheme is adapted, the computational time
of the ELM is unaffected, and the improved accuracy, added robustness and the implicit variable
selection of Binary ELM and Ternary ELM come for free.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The core idea of the Extreme Learning Machine (ELM) [1,2] is
that it creates a single-layer feedforward neural network (SLFN)
consisting of a randomly initialized hidden layer which randomly
projects the inputs into a high-dimensional space. These randomly
projected inputs are then transformed in a nonlinear way using
some (often) nonlinear transfer function like tanh. Finally, the
training of the ELM consists of solving the linear system formed by
these nonlinearly transformed outputs of the hidden layer, and
their corresponding target values [1,2].

The fact that the hidden layer is not touched after initialization
and training consists of solving a linear system, makes the ELM very
fast compared to other learning methods based on for example back-
propagation or gradient-descent [1,2]. However, an aspect of the ELM
that has not received much attention so far is how to exactly initialize
the hidden layer. Typically, some heuristics are used and the random
layer weights and biases are drawn from a uniform distribution in
interval [�5,5] (assuming that the data is normalized to be zero
mean and unit variance) [3], or from another probability distribution
like the Gaussian distribution [4]. However, heuristics like these are
not necessarily optimal for any given data set and it is possible to
improve the hidden layer initialization by adapting it to the problem
at hand.

One approach for adapting the hidden layer to the context is
the mechanism of batch intrinsic plasticity (BIP) [5–7]. The idea of
BIP is that it adapts the slope and bias of the hidden layer neurons
such that their outputs are approximately exponentially distrib-
uted. Given that the exponential distribution is the maximum
entropy distribution, the information transmission of the neurons
is maximized, resulting in a better model [8].

However, given that a transfer function typically looks like
f ðwTxþbÞ, and wTx, the inner product between weight vector w
and input x, can be rewritten as wTx¼ jwJxj cos θ; where θ is the
angle between vectors w and x, it can be seen that the diversity of
neuronal inputs is mostly affected by the diversity of the norms of
vectors w and x and their angle θ. Although BIP adapts the scaling of
the input weights (and with that, the expected value of jwJxj) such
that the neuron operates in a useful regime, BIP does not optimize
the weight generation scheme itself. This suggests that in order to
further improve the diversity of the information extracted by the
hidden layer, the diversity of the angle θ between the weight vectors
and the inputs could be optimized. In this paper, this is achieved by
using a binary f0;1g�weight scheme, or a ternary f�1;0;1g�weight
scheme. By using a weight scheme like this, each neuron in the
hidden layer focuses on a particular subspace of the variables, and
the diversity of the extracted information is improved. Furthermore,
the binary and ternary weight schemes allow the ELM to perform
implicit variable selection, because neurons that incorporate useful
variables extract more useful information and receive higher weight,
while neurons that incorporate bad variables extract less useful
information and are given lower weight.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.01.072
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: mark.van.heeswijk@aalto.fi (M. van Heeswijk).

Neurocomputing 149 (2015) 187–197

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.01.072
http://dx.doi.org/10.1016/j.neucom.2014.01.072
http://dx.doi.org/10.1016/j.neucom.2014.01.072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.01.072&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.01.072&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.01.072&domain=pdf
mailto:mark.van.heeswijk@aalto.fi
http://dx.doi.org/10.1016/j.neucom.2014.01.072


Experiments show that especially the ternary weight scheme
can generally improve the achieved test error. Furthermore, it is
shown that the Binary ELM and the Ternary ELM are more robust
against irrelevant and noisy variables and are in fact performing
implicit variable selection. These advantages come at no increase
in computational cost in comparison to drawing the random
weights from e.g. a uniform or Gaussian distribution, since only
the weight generation scheme is adapted.

The rest of the paper is organized as follows. Section 2 of the
paper discusses the background and theory of ELM, and gives a
short overview of ELM variants as well as preliminaries and
methods relevant for this paper. In particular, it is discussed how
to perform efficient model selection and optimization of the L2
regularization parameter in ELM, which is important for training
robust models. Furthermore, BIP is discussed, since it is useful to
adapt the scaling of the hidden layer weights such that the neurons
operate in an optimal regime. BIP is also important because it
allows us to conclude that any observed differences in performance
between ELMs are due to the different weight generation scheme.
Section 3 discusses the proposed binary and ternary weight
schemes. Finally, Section 4 contains the experiments and analysis
which form the validation for the proposed approach.

2. Preliminaries

2.1. Regression/classification

In this paper, the focus is on the problem of regression, which is
about establishing a relationship between a set of output variables
(continuous) yiAR; 1r irM (single-output here) and another set
of input variables xi ¼ ðx1i ;…; xdi ÞARd. Note that although in this
paper the focus is on regression, the proposed pretraining
approach can just as well be used when applying the ELM in a
classification context.

2.2. Extreme Learning Machine (ELM)

The ELM algorithm is proposed by Huang et al. [2] and uses
Single-Layer Feedforward Neural Networks (SLFN). The key idea of
ELM is the random initialization of a SLFN weights. Below, the
main concepts of ELM as presented in [2] are reviewed.

Consider a set of N distinct samples ðxi; yiÞ with xiARd and yiAR.
Then, a SLFN with M hidden neurons is modeled as the following
sum

∑
M

i ¼ 1
βif ðwi � xjþbiÞ; jA ½1;N�; ð1Þ

with f being the activation function, wi the input weights to the ith
neuron in the hidden layer, bi the hidden layer biases and βi the
output weights.

In the case where the SLFN would perfectly approximate the
data (meaning the error between the output ŷi and the actual
value yi is zero), the relation is

∑
M

i ¼ 1
βif ðwi � xjþbiÞ ¼ yj; jA ½1;N�; ð2Þ

which can be written compactly as

Hβ¼ Y; ð3Þ
where H is the hidden layer output matrix defined as

H¼
f ðw1 � x1þb1Þ ⋯ f ðwM � x1þbMÞ

⋮ ⋱ ⋮
f ðw1 � xNþb1Þ ⋯ f ðwM � xNþbMÞ

0
B@

1
CA ð4Þ

and β¼ ðβ1…βMÞT . With these notations, the theorem presented in
[2] states that with randomly initialized input weights and biases
for the SLFN, and under the condition that the activation function f
is infinitely differentiable, then the hidden layer output matrix can
be determined and will provide an approximation of the target
values as good as desired (non-zero).

Algorithm 1. Standard ELM.

Given a training set ðxi; yiÞ; xiARd; yiAR, an activation function
f : R↦R and M hidden nodes:

1. Randomly assign input weights wi and biases bi, iA ½1;M�.
2. Calculate the hidden layer output matrix H.

3. Calculate output weights matrix β¼H†Y.

The proposed solution to the equation Hβ¼ Y in the ELM
algorithm, as β¼H†Y has three main properties making it a rather
appealing solution:

1. It is one of the least-squares solutions to the mentioned
equation, hence the minimum training error can be reached
with this solution.

2. Among the least-squares solutions, it is the solution with the
smallest norm.

3. This smallest norm solution among the least-squares solutions
is unique and is β¼H†Y.

The reason why the smallest norm solution is preferred, is because
smaller norm solutions tend to have better generalization perfor-
mance, as discussed in [9]. Theoretical proofs and a more thorough
presentation of the ELM algorithm are detailed in the original paper
inwhich Huang et al. present the algorithm and its justifications [2].
Furthermore, the hidden nodes need not be ‘neuron-alike’ [10–12].

Finally, it is recommended to have a bias in the output layer (e.
g. achieved by concatenating the H matrix with a column of ones).
Although this output bias is often not included in the description
of the ELM (since theoretically it is not needed), having the output
bias allows the ELM to adapt to any non-zero mean in the output
at the expense of only a single extra parameter, namely the extra
output weight. This way, the rest of the nonlinear weights can
focus on fitting the nonlinear part of the problem. In a different
context of deep learning [13], decomposing the problem into a
linear part and a nonlinear part has proven to be very effective.

Given a set of candidate neurons, what remains is optimizing the
ELM's other parameters like the subset of M neurons to use or the
regularization parameter. Approaches for picking a subset of M
neurons include model structure selection using an information
criterion like BIC and cross-validation using a criterion like the
leave-one-out error (described in the next section). Other approaches
include methods which first generate a larger than needed set of
neurons, and consequently prune this set of neurons (for example
OP-ELM [3], TROP-ELM [14]), or incremental ways for determining a
set of hidden layer neurons (for example I-ELM [12], CI-ELM [10],
EM-ELM [11]).

An optimization mechanism that is orthogonal to optimizing the
subset of neurons is that of batch intrinsic plasticity (BIP) pretraining
(see Section 2.5), which is a method for optimizing the output
distribution of a given neuron, such that the amount of information
encoded about the inputs is maximized. Also, the proposed binary
and ternary weight schemes (see Section 3) can be considered as
orthogonal to optimizing the subset of neurons, since – like batch
intrinsic plasticity pretraining – it takes place before the training and
optimization of ELM. Therefore, both BIP and the proposed binary
and ternary weight schemes can be applied as a step in many
different ELM variants, and are not restricted to a particular ELM.

M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187–197188



Download English Version:

https://daneshyari.com/en/article/407717

Download Persian Version:

https://daneshyari.com/article/407717

Daneshyari.com

https://daneshyari.com/en/article/407717
https://daneshyari.com/article/407717
https://daneshyari.com

