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a b s t r a c t

Extreme learning machine (ELM) has been an important research topic over the last decade due to its
high efficiency, easy-implementation, unification of classification and regression, and unification of
binary and multi-class learning tasks. Though integrating these advantages, existing ELM algorithms pay
little attention to optimizing the choice of kernels, which is indeed crucial to the performance of ELM in
applications. More importantly, there is the lack of a general framework for ELM to integrate multiple
heterogeneous data sources for classification. In this paper, we propose a general learning framework,
termed multiple kernel extreme learning machines (MK-ELM), to address the above two issues. In the
proposed MK-ELM, the optimal kernel combination weights and the structural parameters of ELM are
jointly optimized. Following recent research on support vector machine (SVM) based MKL algorithms,
we first design a sparse MK-ELM algorithm by imposing an ℓ1-norm constraint on the kernel
combination weights, and then extend it to a non-sparse scenario by substituting the ℓ1-norm constraint
with an ℓp-norm ðp41Þ constraint. After that, a radius-incorporated MK-ELM algorithm which
incorporates the radius of the minimum enclosing ball (MEB) is introduced. Three efficient optimization
algorithms are proposed to solve the corresponding kernel learning problems. Comprehensive experi-
ments have been conducted on Protein, Oxford Flower17, Caltech101 and Alzheimer's disease data sets to
evaluate the performance of the proposed algorithms in terms of classification accuracy and computa-
tional efficiency. As the experimental results indicate, our proposed algorithms can achieve comparable
or even better classification performance than state-of-the-art MKL algorithms, while incurring much
less computational cost.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Extreme learning machine (ELM) was first designed for single
hidden layer feedforward neural networks [1–3] and then extended
to generalized single hidden layer feedforward networks (SLFN)
which did not necessarily resemble neurons [4,5]. Different from
traditional neural SLFN learning algorithms, ELM aims to minimize
both training error and the norm of output weights [3,6]. Due to its
(1) high efficiency, (2) easy-implementation, (3) unification of classifica-
tion and regression and (4) unification of binary and multi-class
classification [6], ELM has been an active research topic over the past
a few years [3,6–12]. In addition, the ELM has also been successfully
applied to many applications such as imbalance learning [13],
missing data learning [14] and activity recognition [15], to name just
a few. More recent advances in ELM can be found in [10–12].

Although researchers have made great progress from both a
theoretical and a practical point of view, ELM has still not well
considered the following two issues. The first one is how to
choose an optimal kernel for a specific application when the
kernel trick is applied to ELM such as in previous work [6,16–
18]. The other one is how to handle information fusion in ELM
when multiple heterogenous data sources are available. In this
paper, we propose a general framework by borrowing the idea of
multiple kernel learning (MKL) to handle the above two issues. We
call our framework a multiple kernel extreme learning machine
(MK-ELM). In the MK-ELM, the optimal kernel is assumed to be a
linear combination of a group of base kernels, and the base kernel
combination weights and structural parameters of ELM are jointly
optimized in the learning process. Though sharing the same
assumption that the optimal kernel is a linear combination of
base kernels, the proposed MK-ELM and the widely studied SVM
based MKL algorithms have important differences. (1) For the
proposed MK-ELM, the binary and multi-class classification pro-
blems are unified into one common formula. In contrast, the one-
against-one (OAO) and one-against-all (OAA) strategies are usually
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adopted in SVM based MKL algorithms [19,20] to handle the
multi-class classification problems. (2) The optimization problem
for MK-ELM is much simpler than the one used in SVM based MKL
algorithms. The structural parameter of MK-ELM can be analyti-
cally obtained by a matrix inverse operation, while a constrained
quadratic programming (QP) solver is required to solve the
optimization problems of SVM based MKL algorithms.

In the literature, there are mainly three research directions for
existing SVM based MKL algorithms, including sparse MKL algo-
rithms [19,21–23], non-sparse MKL algorithms [20,24] and the recent
radius-incorporated MKL variants [25–27]. In order to conduct a
comprehensive comparison with SVM based MKL algorithms, we
also design sparse, non-sparse and radius-incorporated MK-ELM
algorithms in this paper. Specifically, the contributions of this paper
are highlighted as follows:

1. A sparse MK-ELM algorithm is first developed, where an
ℓ1-norm constraint is imposed on the base kernel combination
weights.

2. A non-sparse variant is proposed by substituting the ℓ1-norm
constraint with an ℓp-norm constraint, where p41.

3. Another radius-incorporated MK-ELM is then proposed by
integrating the radius of minimum enclosing ball (MEB)
[28,29] into the objective function of MK-ELM.

4. Comprehensive experiments have been conducted to compare
the proposed MK-ELM variants with existing state-of-the-art
MKL algorithms, including multiple kernel SVM (MK-SVM) [19],
multiple kernel least square SVM (MK-LSSVM) [30], multiple
kernel fisher discriminative analysis (MK-FDA) [23], and their
sparse and non-sparse variants. The experimental results
demonstrate that the proposed MK-ELM variants achieve
statistically comparable or better classification performance
while requiring less training time.

The rest of this paper is organized as follows. We review the
extreme learning machine and multiple kernel learning in Section 2.
In Section 3, we first present the formulation of the sparse MK-ELM,
extend it to a non-sparse case and then propose a radius-incorporated
variant. Three efficient algorithms are given to solve the resulting
optimization problems. Extensive experimental comparison is con-
ducted in Sections 4 and 5 draws our conclusion.

2. Related work

In this section, we give a brief review of extreme learning
machine and multiple kernel learning. Though ELM unifies classi-
fication and regression tasks, we only focus on classification in the
following parts.

2.1. Extreme learning machine

According to the ELM theory [6,10], ELM aims to simulta-
neously minimize the training errors and the norm of output
weights. This objective function, for both binary and multi-class
classification tasks, can be expressed as follows:

min
β;ξ

1
2
‖β‖2Fþ

C
2

∑
n

i ¼ 1
‖ξ�i‖2 s:t: β>ϕðxiÞ ¼ yi�ξ�i; 8 i; ð1Þ

where fðxi; yiÞgni ¼ 1 is a training set, ϕðxiÞði¼ 1;…;nÞ is the hidden-
layer output (feature mapping) corresponding to xi, βARjϕð�Þj�T

is the output weights, ξART�n is the training error matrix on
training data, ξ�i ¼ ½ξ1i; ξ2i;…; ξTi�> ð1r irnÞ is the ith column of ξ,

yi ¼ ½0;…;0;1
t
;0;…;0�> Af0;1gT if xi belongs to the tth ð 1rtrTÞ

class, n and T are the number of training samples and classes, and C is

a regularization parameter which trades off the norm of output
weights and training errors. ‖ � ‖F is the Frobenius norm.

The optimization problem in Eq. (1) can be efficiently solved.
According to [6], the optimal β⋆ which minimizes Eq. (1) can be
analytically obtained as

β⋆ ¼Φ> I
C
þΦΦ>

� ��1

Y> ; ð2Þ

where Φ¼ ½ϕðx1Þ;…;ϕðxnÞ�> ARn�jϕð�Þj, Y ¼ ½y1;…;yn�ART�n and I
is an identity matrix.

As can be seen from the above, both the binary and multi-class
classification tasks in ELM can be handled via an unified formula
Eq. (1). Moreover, Eq. (1) can be analytically solved by a matrix
inverse operation, while a constrained quadratic programming
problem is required in SVM. This makes the ELM easy and efficient
to implement due to the fact that solving a matrix inverse problem
is usually much more computationally efficient than solving the
same-size constrained QP problem. In addition, it is worth men-
tioning that though both ELM and least square SVM (LSSVM) [31]
share the same objective function as far as the optimization is
concerned, there is no bias term deployed in ELM, as in Eq. (1).
Such a subtle difference makes ELM to have milder optimization
constraint than LSSVM. These advantages help ELM to achieve
better classification performance while incurring less computa-
tional cost, as demonstrated by the experimental results in [6].

After obtaining the optimal β⋆, the decision score of the ELM on
test point x is determined by

f ðxÞ ¼ β⋆
>
ϕðxÞ; ð3Þ

and the index corresponding to the highest value of f ðxÞART is
considered as the label of x.

2.2. Multiple kernel learning

It is well known that the choice of kernels is crucial for kernel-
based algorithms [32]. Much effort has been devoted to tuning an
optimal kernel for a specific application [19,33,27]. MKL provides an
elegant way to handle such an issue by optimizing a data-dependent
kernel. In MKL, the optimal kernel is assumed to be a linear
combination of a group of base kernels, and the optimal combination
coefficients and the structural parameters of classifiers are jointly
learned by maximizing the margin [19,30], class separability criterion
[24,23], etc. Specifically, MKL takes the form of

κð�; �; γÞ ¼ ∑
m

p ¼ 1
γpκpð�; �Þ; ð4Þ

where fκpð�; �Þgmp ¼ 1 are m pre-defined base kernels, and fγpgmp ¼ 1 are
the base kernel combination coefficients. Eq. (4) can be equivalently
rewritten as

ϕð�; γÞ ¼ ½ ffiffiffiffiffi
γ1

p
ϕ1ð�Þ;

ffiffiffiffiffi
γ2

p
ϕ2ð�Þ;…;

ffiffiffiffiffiffi
γm

p
ϕmð�Þ�; ð5Þ

where ϕð�; γÞ and fϕpð�Þgmp ¼ 1 are the feature mappings corresponding
to kernels κð�; �; γÞ and fκpð�; �Þgmp ¼ 1, respectively.

Usually, a constraint is imposed on the kernel combination
weights γ to make the optimization problems bounded and the
combined kernel be positive semi-definite (PSD). One common
example is imposing an ℓqðq¼ 1Þ norm and non-negative con-
straint on the kernel combination weights. Such constraint will
induce sparse kernel combination, as shown in [19,21–23].
Another one is imposing an ℓqðq41Þ norm and non-negative
constraint. Unlike the previous one, this constraint will bring forth
non-sparse kernel combination [20,24]. In the following section,
we will design sparse and non-sparse multiple kernel learning
algorithms for ELM by varying q from one to any positive number
larger than one.
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