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In order to circumvent the weakness of very slow convergence of most traditional learning algorithms
for single layer feedforward neural networks, the extreme learning machines (ELM) has been recently
developed to achieve extremely fast learning with good performance by training only for the output
weights. However, it cannot be applied to multiple-hidden layer feedforward neural networks (MLFN),
which is a challenging bottleneck of ELM. In this work, the novel fast learning method (FLM) for
feedforward neural networks is proposed. Firstly, based on the existing ridge regression theories, the
hidden-feature-space ridge regression (HFSR) and centered ridge regression Centered-ELM are pre-
sented. Their connection with ELM is also theoretically revealed. As special kernel methods, they can
inherently be used to propagate the prominent advantages of ELM into MLEN. Then, a novel fast learning
method FLM for feedforward neural networks is proposed as a unified framework for HFSR and
Centered-ELM. FLM can be applied for both SLFN and MLEN with a single or multiple outputs. In FLM,
only the parameters in the last hidden layer require being adjusted while all the parameters in other
hidden layers can be randomly assigned. The proposed FLM was tested against state of the art methods
on real-world datasets and it provides better and more reliable results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The wide popularity of feedforward neural networks in many
fields is mainly due to two factors: (1) the strong approximation
capability for complex multivariate nonlinear function directly
from input samples; (2) The strong modeling capability for a large
class of natural and artificial phenomena which are very difficult
to handle with classical parameter techniques. However, when
applied to many application scenarios, feedforward neural net-
works often face a serious bottleneck issue: their traditional
learning algorithms are usually much slower than required, for
example, taking several hours, several days and even more.

From a mathematical viewpoint, researches about the approx-
imation capability of feedforward neural networks can be categor-
ized into two types: universal approximation on compact input sets
and approximation of a finite set of samples. Theoretical results
about the universal approximation of feedforward neural networks
have been obtained by Hornik and Lesino, see [1,2]. In real-world
applications, since feedforward neural networks are trained on a
finite set of samples, much more endeavors should be taken for
the approximation capability of the second type. Typically, gradient
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descent based learning algorithms like BP [3-7] of feedforward
neural networks have been developed and extensively applied in the
last decades. When these learning algorithms are used, all the
parameters of the feedforward neural networks need to be adjusted
in a backward way and thus there exists the dependence relation-
ship between different layers of parameters in the network. Due to
iterative learning steps, these learning algorithms generally con-
verge very slowly and even to local minima. On the other hand,
cross-validation and/or early stopping are sometimes adopted to
circumvent the so called over-fitting phenomena.

In order to overcome these shortcomings of these learning
algorithms, Huang et al. proposed the extreme learning machine
(ELM) for single hidden layer feedforward neural networks (SLFN)
[3-21]. They proved that the input weights and the hidden layer
biases can be randomly assigned if the activation function in the
hidden layer is infinitely differentiable. Once the input weights and
the hidden layer biases are randomly assigned, SLFN can be
considered as a linear system and the output weights of SLFN can
be analytically solved by using the simple generalized inverse
operation of the hidden layer output matrix. With its easy imple-
mentation, ELM can reach both the smallest training error and the
smallest norm of weights and thus provide good generalization
performance in extremely fast learning speed, for example, thousands
of times faster than BP in many applications|7].

However, as stated in [7], it should be worth pointing out that
gradient-based learning algorithms like back-propagation can be used
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for feedforward neural networks which have more than one hidden
layers while the proposed ELM algorithm at its present form is still only
valid for SLFN. In other words, ELM at its present form cannot be
directly applied to multiple hidden layer feedforward neural net-
works. In this paper, we first propose the hidden-feature-space
ridge regression HFSR and centered ridge regression Centered-ELM
for both SLEN and MLFN, and then build the link between extreme
learning machine (ELM) and them for SLFN. As the special kernel
methods, the virtues of both HFSR and Centered-ELM exist in that
rigorous Mercer's condition for kernel functions is not required and
that it plays a bridging role in naturally propagating the prominent
advantages of ELM into MLFN by using randomly assigned para-
meters and randomly-selected examplars for kernel activation
functions. Through constructing the transformed data set from
the training dataset in a forward layer-by-layer way, we can easily
extend HFSR and Centered-ELM to MLFN. Accordingly, as the
unified framework for HFSR and Centered-ELM, the fast learning
machine (FLM) is proposed for both SLFN and MLFN with a single or
multiple outputs. FLM keeps the same virtues of ELM only for SLFN,
i.e., only the parameters in the last hidden layer require being
adjusted, all the parameters in other hidden layers can be randomly
assigned, and FLM is much faster than BP in training the sample
sets. The experimental results clearly indicate the power of FLM.
The contributions of this paper exist in two aspects: (1)
Through FLM, we can extend ELM to MLFN with keeping the same
virtues of ELM only for SLEN; (2) FLM indeed gives a new forward
encoding learning way rather than a backward gradient-descent
learning way in the widely used learning algorithm BP. It views the
behavior of MLFN between the last hidden layer and the input
layer as the successive encoding procedure for the input data in a
difficult-to-understand way. To large extent, this new understand-
ing can also help us answer why MLEN behaves like a black box.
The remainder of this paper is organized as follows. In Section 2,
we briefly review ELM for SLFN. In Section 3, we first propose the
hidden-feature-space ridge regression HFSR and Centered-ELM, and
then build the link between ELM and them for SLFN. Finally, we give
the fast learning machine FLM as the unified framework of HFSR
and Centered-ELM for SLFN and MLFN with a single or multiple
outputs. In Section 4, we report the obtained experimental results
about Centered-ELM for SLFN and FLM for MLFN on artificial or
benchmarking datasets. Section 5 concludes the paper.

2. Elm for SLFN

In this section, we give a brief review of the extreme learning
machine for a single hidden layer feedforward neural network. For
easy interpretation and derivation hereafter and without loss of
generality, we first consider a single hidden layer feedforward
neural network (SLEN for brevity) with a single output here.
GivenNarbitrary ~distinct samples(X;, t;),X; = [Xj1, X}, ...,xjn]T eR",
tieRj=1,2,....,N, SLFN with Nhidden nodes and the activation
function g(x)and a single output can be mathematically modeled as

Y pgix)= Y PgWXj+b)=0;j=12,...N M
i=1N i=1N
where w; = [Wi;, W, ..., Wi is the weight vector connecting the ith
hidden node and the input nodes, = [f,4,, ..., 51" is the weight
vector connecting all the hidden nodes and the output node, b;is the
threshold of the ith hidden node, and w/x;denotes the inner
product of w; and x;.

We desire that the above SLFN with a single output can

approximate these N samples with zero error, that is to say,

N
> 110;—¢l* =0, )
ji=1

ie. ¥ pig(wixj+b)=t.j=1,2,..N
i=1N

The above N equations can be compactly written as the following
linear system

Hp=T 3
where

H(wy,wy,..,Wg, b1, by, ... by, X1, Xa, ... XN)
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Here H is called the hidden layer output matrix of SLFN, whose ith
column is the ith hidden node output with respect to the inputs
X1,X), ..., XN.

Huang et al. [7] proposed the famous extreme learning machine
based on the following two theorems.

Theorem 1. Given the above single-output SLFN withNhidden nodes
and the activation functiong : R— Rwhich is infinitely differentiable
in any interval, for arbitraryNdistinct samples(X;, t;),X; e R", t; e R, for
any randomly selected weight vector and bias w; e R", b; e R, accord-
ing to any continuous probability distribution, then with probability
one, the hidden layer output matrixH of the SLFN is invertible, and
IHB—T||3 =0.

Theorem 2. Given any small positive value e > 0, there must exist
the above single-output SLFN with Nhidden nodes and N < Nand
activation functiong : R—Rwhich is infinitely differentiable in any
interval, such that for arbitraryNdistinct samples(x;, t;),X; e R",t; eR,
for any randomly assigned weight vector and bias w; e R",b; eR,
according to any continuous probability distribution, then with
probability one, IHy, 3851 —Tnx1113 <e.

According to the above two theorems, for the linear system in
Eq. (3), we can have its unique solution, i.e, the smallest norm least
squares solution pas follows

B=H'T 5)

where H'is the Moore-penrose generalized inverse of the matrix
H. Accordingly, Huang et al. proposed the following extreme
learning machine ELM [7].

Extreme learning machine ELM

Given the sample setD = {(x;,tj)|X; e R", tjeR,j=1,2,.....N},
the infinitely differential activation functiong(x)and the
hidden node number N of SLEN with a single output.

Step1: Randomly assign the weight vector and the bias
w;, b, i=1,2,.N

Step2: Compute the hidden layer output matrixH

Step3: Compute the output weight vector of SLFN, i.e,§ = H'T,
whereT = [tq,t2, ...tN]T.

By t

B r t
In fact, let g=|"" 1|, Bi=[Bu.bo...fxl, T=| 7]

B t

t;=[ti.tio,....tin]", i=1,2,...,m according to Huang's theory [7],
the above ELM still holds for SLFN with m multiple outputs.
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