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a b s t r a c t

Machine learning algorithms are widely used for traffic classification and anomaly detection nowadays,
however, how to fast and accurately classify the flows remains extremely challengeable. In this paper, we
propose an extreme learning machine (ELM) based algorithm called L1-Norm Minimization ELM, which
fully inherits the merits of ELM, and meanwhile, exhibits the sparsity-induced characteristics which
could reduce the complexity of learning model. At the evaluation stage, we preprocessed the raw data
trace from trans-Pacific backbone link between Japan and the United States, and generated 248 features
datasets. The empirical study shows that L1-ELM can achieve good generalization performance on the
evaluation datasets, while preserving the fast learning and little human intervened advantages that
ELM has.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Continued development of the Internet has spawned a large
number of web-based applications, which have brought tremen-
dous network traffic and anomalous activities. Fast and accurate
classification of type of traffic and abnormal behaviors on the
backbone network becomes more and more important for the
Internet Service Providers (ISPs) and network administrators. For
example, ISPs need to monitor the constitutions of different
applications so as to prioritize traffic of the QoS-sensitive applica-
tion, prevent and locate harmful activities and take additional
steps for other reasons, say, politics [1].

To date there mainly exists four effective fashions on traffic
classification and anomaly detection: (1) transport layer port
number based method, which is easy to implement. However, it
becomes increasingly unreliable for the emergence of all kinds of
new applications types, e.g. P2P application, which uses randomly
assigned ports number that are not registered with IANA [2,3];
(2) Deep packet inspection (DPI), a more effective technique,
which inspect the packet payload with existing patterns [4,2,5].
While it has higher detection accuracy, this method demands
much more resources and bandwidth than ISPs and network
administrators could afford and could be blocked from encryption
easily. It should be deployed to the border routers instead of
backbone network; (3) host behavior based method, which lies on

the host system to contrast the audit records and security logs
against archived host profiles. It would raise an alert once they
were found unmatched [4,6]; (4) traffic flow features based
methods, which prevails recently and have been proven promising
for the following perspectives [7,8]. Firstly, flow features could be
easily derived from packets header statistics alone, which avoid
privacy issues, legal constraints and resource-intensive require-
ments. Secondly, in the face of obstacles of encryptions and so on,
flow based features could almost fully characterize the different
applications by using the machine learning methodologies in the
pattern recognition field. Thirdly, many efficient machine learning
algorithms [9–19] have already been applied to dealing with traffic
classification problems, which enriched the theoretical founda-
tions while providing comprehensive applications and analysis.

There are many state-of-the-art methodologies applied in the
traffic classification field. Erman et al. [11] used two unsupervised
clustering algorithms, K-Means and DBSCAN, to demonstrate how
cluster analysis can be used to effectively identify groups of traffic
that are similar using only transport layer statistics. Kim et al. [1]
conducted an evaluation of three traffic classification approaches:
port based, host behavior based and flow features based. After
comparing seven commonly used machine learning algorithms
with the other two kinds of traffic classification methods, they
found that Support Vector Machine (SVM) algorithm achieved
the highest accuracy on every trace and application. Williams et al.
[17] evaluated Naiive Bayes, C4.5, Bayesian Network and Naiive
Bayes Tree algorithms to show that, although classification accu-
racy between the algorithms is similar, computational perfor-
mance can differ significantly.
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Machine learning methodologies are the main solutions to the
flow based traffic classification. However, different from classical
data mining scenarios, traffic classification needs more attentions
in terms of its underlying characteristics. A conventional definition
of flow is 5-tuple (source IP, source port, destination IP, destination
port, protocol), which uniquely identifies a data stream that two
hosts communicate with each other in a certain time period.

As depicted above, the state-of-the-art machine learning algo-
rithms may achieve good accuracy, e.g. SVM, on flow based traffic
classification. However, these approaches are so computationally
expensive that they can be hardly put into practical use unless we
are content with sacrificing accuracy. Extreme learning Machine
(ELM) [20,21] is a rapidly developing learning theory proposed for
generalized single-hidden layer feed-forward networks (SLFNs)
with distinguishing characteristics of (1) fast learning speed
compared to traditional gradient-based algorithms, (2) good gen-
eralization performance on predicting multi-class labels or regres-
sion values, (3) free of human-intervened tuning parameters with
randomly generated hidden node parameters (e.g. random input
weights and hidden biases). In recent years, ELM theory has made
considerable progress, which inspired us a lot when in the face of
traffic classification, since all of these characteristics of ELM could
meet the need of the tremendous growth of the infrastructure of
modern Internet. Therefore, we propose an algorithm which
extends the original ELM theory and framework with L1-norm
minimization of the output weights vector. In this paper, our main
contributions can be summarized below:

� Proposing an L1-norm minimization extreme learning machine
algorithm to exploit the intrinsic data patterns of network.

� Employing an effective preprocessing including flow features
extraction from raw network data trace and labeling the flows.

� Generating the labeled anomaly detection data sets with
ground truth from WIDE project.

The remainder of this paper is organized as follows. After review-
ing the network traffic flows in Section 2, we describe the
algorithm L1-ELM in Section 3. Section 4 describes the preproces-
sing details, and, we evaluate our methods in Section 5. Section 6
concludes this paper.

2. Sparse representation and its application on ELM

The hidden layer neurons have powerful generalization abil-
ities. However, due to the randomness of the input weights, many
neurons may be closely correlated. Regularization is very neces-
sary to prevent the model from over-fitting and improve the
generalization capability.

L1-norm regularization has been extensively applied for its
sparsity-induced capability, when training samples have high
dimensionality. Nevertheless, it draws great attentions in the
optimization research field. As the L1-norm regularization will
lead the problem to a non-smooth and non-differentiable con-
strained optimization one, the problem will become much more
challengeable to solve. The state-of-the-art methodologies for
solving the L1-norm optimization problem can be categorized into
four categories [22]. The first methodology solves the problem as a
non-smooth optimization problem through sub-gradient based
algorithms. The second methodology approximates the L1-norm
term with a smooth formulation, so the smooth optimization
algorithms can solve the problem directly. The third methodology
reformulates the problem into a smooth constraint smooth opti-
mization problem by introducing extra variables. The fourth
methodology casts the problem as a smooth objective function
optimization problemwith a L1-ball constraint, which is applied in

this paper, and it can be formulated as

min
x: Jx J 1 r z

: FðxÞ ð1Þ

where Fð�Þ is a smooth loss function and zARþ . The building block
of this methodology is to apply Euclidean projection onto the L1-
ball [23,24]. In the optimization process of the L1-ELM proposed in
this paper, through casting Euclidean projections as root finding
problems associated with specific auxiliary function, this problem
can be solved in linear time via bisection [25].

As of the popularity of ELM theories, many works have been
done fully utilizing the advantages of ELM. Parallel computing in
a distributed environment is effective when in the face of
computation-intensive scenarios. Li et al. [26] use MapReduce
model [27] to parallelize the ELM computation across large-scale
clusters of machines. Benoît et al. [28] proposed a feature selection
method for nonlinear models with ELM. There also exists some
works that have some common ideas with ours. Decherchi et al.
[29] address the implementation of the powerful ELM model on
reconfigurable digital hardware. To obtain the sparse hidden
neurons, they introduce a new optimization problem with hinge
loss function and L1-norm regularization. The optimization pro-
blem is

min
w

: ∑
N

i ¼ 1
Lðyi;hðxiÞ �wÞþλJwJ1 ð2Þ

where hðxiÞ is the ith row of matrix H, which will be explained in the
next section. ðxi; yiÞ is the ith training sample and its corresponding
target, and Lð�Þ is the hinge loss function. After solving this problem,
sparse hidden neurons are selected in accordance with nonzero
terms in the optimal w. When the selections are done, the original
complete ELM process has to be finished afterwards. The main
differences between their work and L1-ELM lie in: firstly, their
contribution does not change the ELM theory itself, yet L1-ELM can
obtain the sparse neurons and output weights vector in the mean-
time of training process, i.e. the forms and meanings of the two
optimization problems are totally different. Secondly, the optimiza-
tion process in [28] applies a conventional convex optimization
algorithms, say, simplex method or interior point methods [30],
while L1-ELM could achieve the convergence rate of Oð1=k2Þ, w.r.t.
L1-norm regularization.

Miche et al. [31] proposed a methodology named optimally
pruned extreme learning machine (OP-ELM), which is based on
the original ELM algorithm. They firstly construct a SLFN using the
ELM algorithm; then, OP-ELM apply the MRSR [32] algorithm to
obtain a ranking of the hidden neurons. MRSR is an extension of
the least angle regression (LARS) algorithm [33], and it is a variable
ranking method, rather than directly selecting variables with a
LASSO [34] solution. At the third step, OP-ELM prunes less useful
neurons through leave-one-out validation. As we discussed above,
the intrinsic mechanisms between OP-ELM and L1-ELM are
different, although they both construct a SLFN with sparse hidden
neurons. OP-ELM prunes less useful neurons by leave-one-out
validation after ranking the neurons through modified LARS
algorithm, while L1-ELM can obtain the sparse neurons after the
objective function is optimized immediately. Thereafter, we com-
pare these two methodologies with the convergence time and
accuracy in the experiment.

Since Nesterovs method [35] is the one of the optimal first-order
black-box methods for smooth convex optimization, its convergence
rate can achieve Oð1=k2Þ, where k is the number of iterations.
Efficient Euclidean Projection [25], which plays a building block role
in the L1-ELM, makes L1-ELM achieve the convergence rate of
Oð1=k2Þ, although the objective function is non-smooth other than
smooth.
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