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In this paper, identification problem of a general class of nonlinear dynamic systems is fully considered
using adaptive wavelet differential neural networks. In these networks, the activation functions are
described by wavelets where parameters are tuned adaptively. The stability analysis of such identifiers
is performed by means of Lyapunov analysis. Asymptotic convergence of the error and boundedness of
the parameters are proven. To validate the approach, the neuro-identifier is applied to both the Van der
pole oscillator and the twin-tanks plant. The simulation results show that the proposed neuro-identifier
outperforms the sigmoid based differential neural network identifier.
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1. Introduction

In recent years, neural-networks (NNs) have been applied
extensively to model nonlinear systems [1-7]. Although NNs
are powerful tools for handling problems of large dimensions,
nevertheless, the implementation of neural networks suffers from
the lack of efficient constructive methods, both for determining
the parameters of neurons and for choosing network structure.
Most NN structures seen in literature use the sigmoid activation
functions in neurons. The drawbacks of using such functions are
that they are not orthogonal and their energies are infinite leading
to a slow convergence rate. Also, NNs with sigmoid activation
functions cannot accurately characterize local features that typi-
cally embody important information about the system such as
discontinuities in curvature or jumps in objective function [8,9].

On the other hand, the wavelet decomposition can be used
for approximation problems. Wavelets are local functions with
limited durations. Although the wavelet theory has offered efficient
algorithms for various purposes, their implementations are usually
limited to wavelets of small dimensions. This is due to the fact that
constructing and storing wavelet basis of large dimensions are
of prohibitive cost [10]. To be able to handle problems of larger

* Corresponding author.
E-mail addresses: jahangiri_ftm@aut.ac.ir (F. Jahangiri),
dad@aut.ac.ir (A. Doustmohammadi), menhaj@aut.ac.ir (M.B. Menhaj).

0925-2312/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2011.07.013

dimensions, it is necessary to develop algorithms that are scalable,
i.e,, less sensitive to dimensions.

Because of the similarity between wavelet decomposition and
one-hidden-layer NN, the idea of combining both wavelets and
NNs was proposed by Zhang and Benveniste [11]. Localization
properties of wavelets together with learning abilities of NN can
result in networks with efficient constructive methods that are
capable of handling problems of moderately large dimensions
[11-13]. Also, improved localized modeling can aid both data
reduction and subsequent classification tasks that rely on accu-
rate representation of local features [13,14]. Wavelet neural
networks (WNNs) have the advantage over NNs in a sense that
they can capture local information. Many researchers [15-19]
have used such structures for solving approximation, classifica-
tion, prediction, control and many other problems.

The existing WNNs are classified into two categories: fixed grid
WNNs and adaptive WNNs [19]. In fixed grid WNNs, wavelets stem
from the discrete wavelet transforms and the unknown dilation
and translation factors of wavelets vary on some fixed discrete
lattices. Hence, these parameters are fixed and only the networks
weights are optimized in training phase. The number of candid
wavelets in a fixed grid WNN often increases dramatically with the
order of the model. Consequently, these WNNs are often limited to
low dimensions; however, in adaptive WNNs wavelets stem from
the continuous wavelet transform and the unknown continuous
parameters (the weighting coefficients, the dilation, and the
translation factors) are adjusted recursively. These networks have
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been successfully applied to nonlinear static function approxima-
tion and classification [19,20].

NNs with feedback have extensive applications since most
systems to be modeled and controlled are indeed dynamic in nature.
Therefore, differential neural networks (DNNs) were introduced [21].
In view of DNN continuous structure, more detailed techniques must
be applied to answer important questions such as stability, conver-
gence, etc. Lyapunov's theorem is the main tool to prove stability
of DNNs that are used to improve estimation problems or to control
action design [22]. In [23], the wavelet theory over the DNN
structures has been applied for state estimation and nonparametric
identification. The activation functions used to approximate the
uncertain nonlinear functions were orthogonal and non-redundant
basis of wavelet functions. A learning law containing an adaptive
adjustment rate is suggested there to imply the stability condition
for the free parameters of the observer. Lyapunov theorem is used to
obtain the upper bounds for both the weights dynamics and the
mean squared estimation error.

To reduce the number of wavelet candidates required to identify
the system, the adaptive wavelet differential neural networks
(AWDNNSs) are fully developed in the paper. In these networks, in
addition to weights of the network, the dilation and translation
factors of the wavelets are also tuned adaptively. This paper presents
a new method, which is indeed an extension of previous one, in
which the adaptive rule for tuning the identifier parameters derived
through Lyapunov stability analysis. Asymptotic convergence of the
identification error and boundedness of the parameters are further
proven.

This paper is organized as follows. Section 2 describes approx-
imation of any function belonging to L, space using adaptive WNN
and it also describes AWDNN identifier structure. Stability analy-
sis of AWDNN identifier is discussed in Section 3. Two illustrative
examples are given in Section 4 that demonstrate the effective-
ness of the AWDNN. Finally, conclusion is given in Section 5.

2. AWDNN identifier

In this section, the concept of an adaptive WNN, its capability
to approximate nonlinear systems, and the identifier structure of
AWDNN are described.

2.1. Adaptive wavelet neural network approximation

The wavelet analysis procedure is implemented with dilated and
translated versions of a mother wavelet. Several kinds of mother
wavelets have been developed. Examples of these wavelets are:
Daubechies, Morlet, Mexican Hat, Meyer, etc. In theory, the dilation
parameter of a wavelet can be any positive real value and the
translation can be an arbitrary real number. This is referred
to as the continuous wavelet transform. It is well known that any
function h(x)eL,(R"), can be reconstructed by the inverse wavelet
transform [12,13]. It is shown in [13] that the discrete representa-
tion of the inverse continuous wavelet transform can be written as

hex) =3 o (bix—ap) (M)

In the above equation, y/( - ) is the wavelet function, b; and g; are the
dilation and translation parameters, w; is the weight of ith wavelet
function, and n is the dimension of x. For discrete version of the
reconstruction of h(x) to hold, some conditions must be satisfied; for
example, one may look for some countable sets of a;, and b;, such
that the corresponding families of dilated and translated wavelets
given by the following:

{b}*Y(bix—a;) : i€ Z} )

constitute an orthonormal basis of some functional space (typically,
L>(R™). In order to generate an orthonormal basis, the wavelet
function has to satisfy strong restrictions and a compromise between
the regularity and the compactness of the wavelet function is
necessary. This may be considered as a first solution for providing
the aforementioned conditions required.

The other solution consists of nonorthogonal wavelet families,
in particular wavelet frames. By relaxing the orthogonality, much
more freedom on the choice of wavelet function is achieved.

Definition. A sequence {i;:ieZ} in a Hilbert space, H, is called a
frame of H, if there exist two constants A > 0 and B < oo such that
for all heH the following inequalities hold:

Alh|* <> 7| (hi)|” <Blh|® 3)
ieZ

where ¢, is the inner product. Under the frame condition, h can
be recovered. Hence, if family (2) constitutes a frame, then the
discrete reconstruction formula (1) is ensured. However the
applications of orthonormal wavelet bases and wavelet frames
are usually limited to problems of small dimensions. For practical
implementations, infinite wavelet bases and frames are always
truncated that approximate h. The number of wavelets in a
truncated basis or frame drastically increases with the dimension,
therefore, constructing and storing wavelet bases or frames of
large dimension are of prohibitive cost. If the inverse continuous
wavelet transform is discretized according to the distribution of
the data, we can expect to reduce the number of wavelets needed
in function approximation. It is thus possible to handle problems
of large dimensions with such adaptive discretization of the
inverse wavelet transform. The goal of the adaptive discretization
is to determine the parameters w;, a; and b; in (1) according to a
data sample. This problem is very similar to neural-network
training. As a matter of fact, (1) can be viewed as a one-hidden
layer neural network with y as the activation function of the
hidden neurons and with a linear neuron in the output layer. The
adaptively discretized inverse wavelet transform is therefore
referred to as adaptive WNN.

2.2. Adaptive wavelet differential neural network identifier

Consider an unknown dynamic nonlinear system described by
the following equation:

x =f(x,u,t) 4)

where xeR" and ueR™ (m < n) are the state vector and the input
vector of the system, respectively.

In view of the adaptive WNN capabilities, as discussed in
previous section, any function fe L, could be approximated. The
following approximation formula is used [23]:

feut) = fx+ W™ Ax) + W d(x)p(u) (5)

In the above equation, feR"*", W1* ¢ RN W2 ¢ RN A(x) =
[0kCOIN, x1,PX) = [D;(X)]n, x> and yeRT™ ! where it is assumed that
the number of states of the system is given by n. The symbol y( -)
is defined as the vector field from R™ to R. The activation function
matrices, 4 and @ are constructed with components defined by
dilated and translated wavelet functions

o) = o(bf(x—ap)); k=1,2,..,N;

b0 = P x—t*) i=12...Ny j=12,..q (6)
where af, t*cR" and b, &* ¢ R*. For the case n > 1, one needs
to use one of the available multidimensional wavelet functions

[24]. The one that is used in this paper is Euclidean norm of the
argument. The mother wavelet chosen in this paper, for both
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