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ARTICLE INFO ABSTRACT

Available online 23 August 2011 Granger causality (GC) is one of the most popular measures to reveal causality influence of time series
based on the estimated linear regression model and has been widely applied in economics and
neuroscience due to its simplicity, understandability and easy implementation. Especially, its counter-
part in frequency domain, spectral GC, has recently received growing attention to study causal
interactions of neurophysiological data in different frequency ranges. In this paper, on the one hand,
for one equality in the linear regression model (frequency domain) we point out that all items at the
right-hand side of the equality make contributions (thus have causal influence) to the unique item at
the left-hand side of the equality, and thus a reasonable definition for causality from one variable to
another variable (i.e., the unique item) should be able to describe what percentage the variable
occupies among all these contributions. Along this line, we propose a new spectral causality definition.
On the other hand, we point out that spectral GC has its inherent limitations because of the use of the
transfer function of the linear regression model and as a result may not reveal real causality at all and
lead to misinterpretation result. By one example we demonstrate that the results of spectral GC
analysis are misleading but the results from our definition are much reasonable. So, our new tool may
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have wide potential applications in neuroscience.
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1. Introduction

Given a set of time series, how to define causality influence
among them has been a topic for over 2000 years and has yet to
be completely resolved so far. In the literature one of the most
popular definitions for causality is Granger causality (GC). The
basic idea of GC was initially conceived by [1] and later forma-
lized by Granger in the form of linear regression model [2]. It can
be simply stated as follows: if the variance of the prediction error
for the second time series at the present time is reduced by
including past measurements from the first time series in the
linear regression model, then the first time series can be said to
have a causal (driving) influence on the second time series.
Reversing the roles of the two time series one repeat the process
to address the question of driving in the opposite direction. Due
to its simplicity, understandability, easy implementation, GC has
been widely used in economics. In recent years there has been
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growing interest to discuss causal interactions in neuroscience.
For instance, with GC analysis Oya et al. [3] demonstrated causal
interactions between auditory cortical fields in humans through
intracranial evoked potentials to sound. Gow et al. [4] showed a
consistent pattern of direct posterior superior temporal gyrus
influences over sites distributed over the entire ventral pathway
for words, non-words, and phonetically ambiguous items. Since
frequency decompositions are often of particular interest for
neurophysiological data, the original GC in time domain has been
extended to spectral domain. Several spectral Granger or Granger-
alike causality tools have been developed such as spectral GC [5],
partial directed coherence (PDC) [6], relative power contribution
(RPC) [7], directed transfer function (DTF) [8], short-time direct
directed transfer function (SADTF) [9], etc. The applications of
these tools to neural data have yielded many promising results.
For example, Brovelli et al. [10] applied spectral GC to identify
causal influences from primary somatosensory cortex to motor
cortex in the beta band (15-30Hz) frequency during lever
pressing by awake monkeys. Sato et al. [11] applied PDC to fMRI
to discriminate physiological and nonphysiological components
based on their frequency characteristics. Yamashita et al. [7]
applied RPC to evaluate frequency-wise directed connectivity of
BOLD signals. Kaminski and Liang [12] applied short-time DTF to
show the predominant direction of influence from hippocampus
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to supramammilary nucleus (SUM) at the theta band (3.7-5.6 Hz)
frequency. Korzeniewska et al. [9] used SADTF to ECoG recordings
to reveal frequency-dependent interactions, particularly in high
gamma ( > 60 Hz) frequencies, between brain regions known to
participate in the recorded language task.

The above spectral Granger or Granger-alike causality defini-
tions are based on the transfer function matrix (or its inverse
matrix) of the linear regression model. For two time series, all
these definitions are equivalent to show whether one time series
has causal influence on the other time series. The spectral GC
definition can only be used to two time series. The other Granger-
alike causality definitions can be applied to multi-dimensional
time series. In this paper, we first propose a causality definition in
frequency domain for the linear regression model and then take
spectral GC as example and show shortcomings and/or limitations
of spectral GC.

2. Definition for causality in frequency domain

Consider the following general model:
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where X;(i=1,...,n) are n time series, t=0,1,...,N, #; has zero
mean and variance of ¢; and gy, = cov(n; )i, k=1,...,n
Taking Fourier transformation on both side of Eq. (1) leads to
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From (2) one can see that contributions to X,(f) not only include
a1 (OX1 (), -+ k-1 DX 1 (s Bge - 1 DX 10, - @ (HXn(H)  and
the noise term 7, (f), but also include ay,(f)Xi(f). Fig. 1 intuitively
describes the contributions to Xi(f). Each contribution plays an
important role in determining X,(f). If a,;(f)X;(f) occupies larger
portion among all those contributions, then X; has stronger
causality on X, or vice versa. Thus, a good definition for causality
from X; to X in frequency domain should be able to describe what
percentage X; occupies among all these contributions. Motivated
by this idea, a direct causality from X; to X, in frequency domain
can be defined as follows:
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Fig. 1. Contributions to X,(f).
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Remark 1. (i) It is easy to see that 0 < inﬂxk(f) <1. Nx,-ﬂxk(f) =0
if and only if ai;(f) =0 which means all coefficients ay; 1, ...,0kim
are zeros. Nx,-Exk(f) =1 if and only if o-%k =0 and a;(f)=0,
j=1,...,nj+#i which means there is no noise term 7, and all
coefficients a1, .. .,ax,m are zeros j=1,...,n,j #1, that is, the kth
equality in Model (2) can be written as
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from which one can see that X, is completely driven by X;'s past
values. (ii) Once Model (1) is evaluated based on the n time series
Xi,...,Xn, from (4) the direct bidirectional causalities between
any two channels can be obtained. Based on this definition, the
indirect causality from X; to X via X; may be defined as
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(iii) Given any route R:X;—X] -X| — .- —X| —Xk where
{X;l,...,X;h}E{Xl,...,Xn}f{Xi,Xk}, the indirect causality from X;

to X via this route R may be defined as
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In the literature, there are several other measures to define
Granger and Granger-alike causality in the frequency domain
such as spectral GC [5,6], RPC [7], DTF [8], and SADTF [9]. In the
following, we will take spectral GC as an example and point out
its shortcomings and/or limitations.

Given the bivariate model (1), the spectral Granger casual
influence from X, to X; is defined by
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where the transfer function is H(f) =A~!(f) whose components

are
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It is easy to see that when there is causality from X, to X,
Ix, - x,(f) varies in [0, +o0). This definition has shortcomings and/
or limitations as shown in the following remark.
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