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a b s t r a c t

Considering Factor Analysis (FA) for each component of Gaussian Mixture Model (GMM), clustering and
local dimensionality reduction can be addressed simultaneously by Mixture of Factor Analyzers (MFA)
and Local Factor Analysis (LFA), which correspond to two FA parameterizations, respectively. This paper
investigates the performance of Variational Bayes (VB) and Bayesian Ying-Yang (BYY) harmony learning
on MFA/LFA for the problem of automatically determining the component number and the local hidden
dimensionalities (i.e., the number of factors of FA in each component). Similar to the existing VB learning
algorithm on MFA, we develop an alternative VB algorithm on LFA with a similar conjugate Dirichlet–
Normal–Gamma (DNG) prior on all parameters of LFA. Also, the corresponding BYY algorithms are
developed for MFA and LFA. A wide range of synthetic experiments shows that LFA is superior to MFA in
model selection under either VB or BYY, while BYY outperforms VB reliably on both MFA and LFA. These
empirical findings are consistently observed from real applications on not only face and handwritten
digit images clustering, but also unsupervised image segmentation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mixture models [1,2], such as Gaussian Mixture Model (GMM)
[3,4], have been widely used in many applications. By exploiting
the Factor Analysis (FA) [5] in each Gaussian component, the
correlated high dimensional data can be represented by fewer
latent factors without requiring Oðd2Þ parameters for each Gaus-
sian covariance matrix, where d is the dimensionality of the data.
The mixture model can be regarded as a constrained GMM, and
has been studied under the name of Mixture of Factor Analyzers
(MFA) [2,6] or Local Factor Analysis (LFA) [7,8] in the literature.
MFA and LFA separately employ two parameterizations of FA,
shortly called as FA-a that takes the form of a free factor loading
matrix and an identity covariance matrix for the latent factors, and
FA-b that constrains the factor loading matrix to be a rectangular
orthogonal matrix, and allows a diagonal covariance matrix for the
latent variables, respectively in [9].

Learning MFA/LFA includes parameter learning for estimating
all the unknown parameters and model selection for determining
the component number k and the hidden dimensionalities fhigki ¼ 1.
Parameter learning is usually implemented under the maximum

likelihood principle by an Expectation–Maximization (EM) algo-
rithm [1,10,11]. A conventional model selection approach is
featured by a two-stage implementation. The first stage conducts
parameter learning for each kAM to get a set of candidate
models, where k¼ fk; fhigg for MFA/LFA. The second stage selects
the best candidate by a model selection criterion, e.g., Akaike's
Information Criterion (AIC) [12]. However, this two-stage imple-
mentation suffers from a huge computation because it requires
parameter learning for each kAM. Moreover, a larger k often
implies more unknown parameters, and then parameter estima-
tion becomes less reliable so that the criterion evaluation reduces
its accuracy (see Section 2.1 in [13] for a detailed discussion).

To reduce the computation, an Incremental Mixture of Factor
Analyzers (IMoFA) algorithm was proposed on MFA in [14] with
the validation likelihood as the criterion to judge whether to split
a component, or add a hidden dimension, or terminate. Although
such an incremental procedure can save the costs to some extent,
it usually leads to a suboptimal solution [13,15].

Another road is referred to as automatic model selection, which
starts from a large enough k, and has an intrinsic force to drive
extra structures diminished, and thus automatically determines k
during parameter learning. An early effort is Rival Penalized
Competitive Learning (RPCL) on GMM [16,17]. Two Bayesian
related approaches can be implemented with a nature of auto-
matic model selection. One is Bayesian Ying-Yang (BYY) learning,
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proposed in [18] and systematically developed in the past decade
and a half [13,15,19,20], which provides a general statistical
learning framework that can handle both parameter learning
and model selection under a best harmony principle. BYY is
capable of automatic model selection even without imposing any
priors on the parameters, and its performance can be further
improved with appropriate priors incorporated according to a
general guideline. The other is Variational Bayes (VB) [6,21]. It
tackles the difficulty in computing the marginal likelihood with a
lower bound by means of variational method, and an EM-like
algorithm is employed to optimize this lower bound. The model
selection of VB is realized by incorporating an appropriate prior
distributions on the parameters.

Recently, a comparative study [4] was delivered on automatic
model selection by BYY, VB and MML (Minimum Message Length)
for GMM with priors over the parameters. Also in [9], FA-b shows
better model selection performance than FA-a under BYY and VB,
although FA-a and FA-b have equivalent likelihood functions.

This paper is motivated for an empirical investigation on the
automatic model selection performances of BYY and VB, based on
MFA and LFA, which actually correspond to Mixture of FA-a and
Mixture of FA-b, respectively. There exists a VB algorithm [6] for
MFA with a Dirichlet prior on the mixing weights, Normal priors
on the columns of the factor-loading matrix, and Gamma priors on
precision parameters. Following [4], we consider a full prior on all
parameters and adopt a Normal prior over the mean vector in each
component of MFA. For short, DNG is referred to the above
Dirichlet, Normal, Gamma priors. By slightly modifying the one
in [6], we obtain a VB learning algorithm with the DNG prior,
shortly denoted as VB-MFA. Also, a similar conjugate DNG prior is
considered on the parameters of LFA.

Moreover, we develop three automatic model selection algo-
rithms, namely the VB algorithm on LFA, or VB-LFA for short, and
the BYYalgorithms onMFA and LFA, shortly denoted as BYY-MFA and
BYY-LFA respectively. With the conjugate property of the priors, the
BYY harmony measure is computed by directly integrating out the
parameters with respect to the Yang posteriors, instead of using
Taylor approximations as in [9]. The handled marginal density of
observed variable in each component is tackled by a lower-bound
approximation with the help of additional variables, leading to
products of multiple Student's T-distributions.

The performances of automatic model selection are extensively
compared on a wide range of randomly simulated data, via
controlling the hardness of tasks by varying the dimension of
data, the number of samples, the true number of components, and
the overlap degree of components. The simulated results show the
following empirical findings. First, LFA gets better performance
than MFA under either VB or BYY, which echoes the advantages of
FA-b over FA-a observed in [9]. Second, BYY outperforms VB on
both MFA and LFA, and in most cases BYY-LFA performs the best.
Also, we apply these algorithms to not only clustering face and
handwritten digit images, but also unsupervised image segmenta-
tion on real world images. The results are consistent with the
observations from simulated experiments.

The main contribution of this paper can be summarized in two-
fold. First, three algorithms, i.e, the algorithm of VB based LFA with
Dirichlet–Normal–Gamma (DNG) prior, denoted by VB-LFA, the
algorithm of BYY based LFA with DNG prior, denoted by BYY-LFA,
and the algorithm of BYY based MFA with DNG prior, denoted by
BYY-MFA are derived in detail. Second, based on the algorithms,
we empirically compared by extensive experiments the two types
of clustering of factor analysis models, i.e., LFA and MFA, as well as
two types of automatic model selection strategies, i.e., VB and BYY.

The remainder of this paper is organized as follows. Section 2
introduces MFA/LFA and their DNG priors. We introduce the
automatic model selection algorithms with the DNG priors by

BYY in Section 3, and by VB in Section 4. Experimental compar-
isons are conducted via a wide range of synthetic datasets and real
applications in Section 5. Finally, concluding remarks are made in
Section 6.

2. Models and priors

2.1. Model parameterizations

In a mixture model, the distribution qðxjΘÞ of a d-dimensional
observed random variable x is a mixture of several local distribu-
tions qðxji; θÞ, with each named as a component:

qðxjΘÞ ¼ ∑
k

i ¼ 1
αiqðxji; θiÞ with Θ¼ fαig [ fθig; ð1Þ

where k is the component number, fαig are mixing weights with
∑k

i ¼ 1αi ¼ 1 and each αiZ0, and θi denotes parameters of the ith
component. Here and throughout this paper, qð�Þ is referred to as a
generative distribution, likelihood or prior, while pð�Þ is referred to
as a posterior distribution.

If each component is a Gaussian distribution, i.e., qðxji;ΘÞ ¼
Gðxjμi;ΣxjiÞ with mean μi and covariance matrix Σxji, qðxjΘÞ by
Eq. (1) becomes the widely used Gaussian Mixture Model. For a
full matrix Σxji, there are 0:5dðdþ1Þ free parameters to be
estimated, whose accuracy is difficult be guaranteed for a small
sample size. One way for tackling this problem is to impose certain
constraints on Σxji with a Factor Analysis model, i.e.,

qðxjy; i; θiÞ ¼ GðxjAiyþμi;ΨiÞ; qðyji; θiÞ ¼ Gðyj0;ΣyjiÞ;

qðxji; θiÞ ¼
Z

qðxjy; i; θiÞqðyji; θiÞ dy¼ Gðxjμi;AiΣyjiA
T
i þΨiÞ; ð2Þ

where we introduce a hidden factor y in an hi-dimensional
subspace with hiod, and constrain Ψi to be diagonal. FA actually
factorizes Σxji to be Σxji ¼AiΣyjiA

T
i þΨi with fewer free parameters.

To reduce the indeterminacies of the FA by Eq. (2), two parameter-
izations of FA are typically used, called as Mixture of Factor Analyzers
(MFA) [2,6] and Local Factor Analysis (LFA) [7,8] respectively, with their
corresponding mixture models by Eq. (1) summarized in Table 1. The
two FA parameterizations have equivalent likelihood functions by
Eq. (2), and thus they have the same model selection performance in a
two-stage implementationwith AIC or BIC [22]. However, it was found
that they result in different model selection performances under BYY
[23], and a recent study [9] provided systematic empirical findings on
how parameterizations affect model selection performance under not
only BYY but also VB. Moreover, the differences of two parameteriza-
tions on model selection performance have been further analytically
investigated in Section 2.2 of [20]. In this paper, we proceed to
investigate the automatic model selection performances of MFA/LFA
under BYY and VB.

Moreover, when each diagonal covariance Ψi in Table 1 is
constrained to be spherical, i.e., Ψi ¼ ψ iId, MFA and LFA will
degenerate to Mixture of PCA [11] and Local PCA [8], respectively.

Table 1
MFA v.s. LFA: similarity and difference. MFA and LFA are actually mixtures of FA-a
and FA-b in [9], respectively.

Model: MFA (mixture of FA-a) LFA (mixture of FA-b)

Parameters θi: fAi; μi ;Ψig fUi;Λi ; μi ;Ψig
Same: Ψi is d� d diagonal Ψi is d� d diagonal
Different: Ai is general d� hi Ui is orthogonal, i.e., UT

i Ui ¼ Ihi ,
Λi is diagonal, Λi ¼ diag½λ1 ;…; λhi �

qðyji; θiÞ: Gðyj0; Ihi Þ Gðyj0;ΛiÞ
qðxjy; i; θiÞ: GðxjAiyþμi ;ΨiÞ GðxjUiyþμi ;ΨiÞ
qðxji; θiÞ: Gðxjμi ;AiA

T
i þΨiÞ Gðxjμi ;UiΛiU

T
i þΨiÞ
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