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a b s t r a c t

Learning a classifier when only knowing the features and marginal distribution of class labels in each of
the data groups is both theoretically interesting and practically useful. Specifically, we consider the case
in which the ratio of the number of data instances to the number of classes is large. We prove sample
complexity upper bound in this setting, which is inspired by an analysis of existing algorithms. We
further formulate the problem in a density estimation framework to learn a generative classifier. We also
develop a practical RBM-based algorithm which shows promising performance on benchmark datasets.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the advent of big data era, it is easy to collect millions or
even billions of unlabeled data instances, each of which belongs to
a specific data group. Many organizations would like to release
some datasets to the public. In many cases, such datasets may
contain some sensitive information which involves the privacy
of users and should not be revealed. Examples include GIC,
which collected health insurance data for Massachusetts state
employees; AOL, which collected search log data from its
users; and Netflix, which collected movie ratings from its custo-
mers [17]. While such a publishing could benefit both the society
and organizations themselves (for example, some technical
researchers could utilize some scientific tools to obtain a better
understanding of medical data or use advanced collaborating
filtering algorithms for recommendation in social networks),
there still exits a serious concern that some individual information
will be revealed. If we interpret such a situation with machine
learning community, it means that the sensitive attribute (such as
whether someone has a certain disease, 1 for yes and 0 for no),
could be the label of some non-sensitive features respecting to
someone.

Suppose we have collected data in a number of groups, the
problem of learning a classifier when only the label proportions
(i.e. marginal distribution of class labels) in each data group are
available naturally arises in two scenarios. In the first scenario, the

label statistics in each group is available or can be reliably
estimated; however, it is too expensive (or not allowed for privacy
concerns) to collect the label information for every instance,
as a result purely supervised learning is not possible, and learning
from label proportions provides an useful alternative. In the
second scenario, the class-conditional distribution of features
evolves with time, space, etc., making it usually inappropriate
to use a classifier learned beforehand to deal with the classifica-
tion problem at present, in which case we have to resort to
new learning paradigm. To summarize, the question we are
interested in is: can we learn a useful classifier using the label
proportions only?

In this paper we give an affirmative answer to this question,
arguing that it is possible to build a useful classifier given data groups
and the label proportions in each group, even when no individual
datum is labeled. We propose a framework to build generative
classifiers in this situation by density estimation, which is particularly
well-suited for big data problems. Specifically, we prove that when
data groups grow large with respect to the number of groups, our
approach gains considerable advantages over a previously proposed
SVM-based discriminative method. We also show how to build an
RBM-based generative classifier derived from this framework, using
information of label proportions from each data group only. The
algorithm estimates the group-conditional likelihood of a specific
datum by exploiting the annealed importance sampling (AIS) tech-
nique [12] to reliably estimate the normalization constant of each
RBM. In experiments, our algorithm shows favorable performance on
various real-world datasets.

The rest of the paper is organized as follows. In Section 2 we
formulate the problem of learning from label proportion and
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review a few important algorithms. Section 3 proves a sample
complexity upper bound. We propose our learning framework and
new algorithm in Section 4. Experimental results comparing the
performances of our new method with existing algorithms are
given in Section 5. Section 6 gives the conclusion. Appendix A
contains the proof of some of the theorems. Appendix B discusses
the sample complexity upper bound in more detail with some
empirical verification.

2. Preliminary and background

In this section we first give a formal description of the learning
problem and then briefly review some representative existing
works, which inspire our theoretical results of learnability and
sample complexity bound in Section 3.

2.1. Problem formulation

For the learning with label proportion problem, the information
the learner has is quite limited compared to traditional supervised
learning. Fig. 1 illustrates four settings: supervised learning, unsu-
pervised learning, semi-supervised learning and learning with label
proportion.

We first formally define learning with label proportion.

Definition 1 (Learning with label proportion). Assume that X is an
instance space (features product space) and Y is the set of labels.
Let PðX;YÞ be a fixed but unknown probability distribution and Y
be some discrete values, i.e. Y ¼ fy1;…; ylg. Given a set of unlabeled
observations fx1;…; xNg, which is drawn i.i.d. from P and divided
into n disjunct subsets A1;…;An, where we denote the size of

jAij ¼mi; 8 iAf1;2;…;ng. In addition, we do not know the label
of each observation but know the label proportions πij for each
subset, where πij denotes the proportion of label yj in subset Ai.
The goal of learning with label proportion is to design an
algorithm which is able to predict y for each observation xAX
(or construct an estimator of PðY jXÞ).

For convenience, we combine all label proportions πij as an
n� l matrix Π, which will be referred to as Proportion Matrix.
Clearly, the elements in each row sum up to one. This matrix will
be used frequently below.

2.2. Related works

Although learning from incomplete label information (e.g.,
semi-supervised learning) has been extensively studied in the
past two decades, there are relatively few works on learning from
label proportions [3,1,5,6]. Below we briefly review two algo-
rithms. These algorithms make clever uses of the Proportion
Matrix. Analyses of these algorithms shed light on the learnability
of the learning with label proportion problem.

2.2.1. Mean map
The concept of Proportion Matrix was initially proposed in [6],

in which the authors develop an algorithm Mean Map to learn a
classifier in the label proportion setting. The Mean Map algorithm
is based on modeling the conditional class probability pðyjx;θÞ by a
conditional exponential model with only one parameter θ.

pðyjx;θÞ ¼ expð〈ϕðx; yÞ;θ〉�gðθjxÞÞ ð1Þ
where g is a normalizing function, θ is a vector in new space
and ϕ is a feature map into a Reproducing Kernel Hilbert

Fig. 1. Various cases of learning problem. From the colored pictures, we can apparently see that the information acquired in proportion case is between supervised case and
unsupervised case. But it is difficult to determine which is more informative when the last case is compared semi-supervised one. (a) Supervised learning. (b) Unsupervised
learning. (c) Semi-supervised learning. (d) Proportion learning. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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