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a b s t r a c t

Several computational approaches have been proposed for inferring the affective state of the user,
motivated for example by the goal of building improved interfaces that can adapt to the user's needs and
internal state. While fairly good results have been obtained for inferring the user state under highly
controlled conditions, a considerable amount of work remains to be done for learning high-quality
estimates of subjective evaluations of the state in more natural conditions. In this work, we discuss how
two recent machine learning concepts, multi-view learning and multi-task learning, can be adapted for
user state recognition, and demonstrate them on two data collections of varying quality. Multi-view
learning enables combining multiple measurement sensors in a justified way while automatically
learning the importance of each sensor. Multi-task learning, in turn, tells how multiple learning tasks
can be learned together to improve the accuracy. We demonstrate the use of two types of multi-task
learning: learning both multiple state indicators and models for multiple users together. We also
illustrate how the benefits of multi-task learning and multi-view learning can be effectively combined in
a unified model by introducing a novel algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Affective computing seeks to develop more efficient and plea-
sant user interfaces by taking into account the affective state of
the user. For example, the information flow can be tailored by
managing interruptions from e-mail alerts and phone calls when
the user is in deep thought [7], and the affective state can be
used to determine the most suitable time to intervene during a
pedagogical game [8]. Apart from adapting the interface, informa-
tion on the affective state can be used to gain a deeper under-
standing of how users and computers interact. A prerequisite of
affective computing is the ability to recognize users' states of
interest, either by observing the users' actions [26] or by analyzing
physiological signals measured from the user [25,15,6]. In this
work, we study the latter approach and discuss machine learning

solutions for inferring the affective state of the user from physio-
logical signals in unobtrusive and loosely controlled user setups.

During recent years, several databases of physiological mea-
surements in affective computing tasks have been released
[13,22,31], in an attempt to provide high-quality data for learning
and benchmarking state inference models. The state of the art in
the field is that the user's state can be inferred relatively accurately
in highly controlled experiment setups where the stimuli evoke
strong emotional responses [20,24,32]. For less controlled setups,
where the ground truth labels come from user evaluations, some
recent works have obtained positive results [22,2,9,11,33] but in
many cases the prediction accuracies are not yet sufficiently high
for practical use in adaptive interfaces.

We introduce two elements frommachine learning literature to
help improve the user state estimation: multi-view learning and
multi-task learning. Both ideas can be incorporated into many of
the current state estimation methods (for a recent review see
[34]), to obtain better estimates of the user's affective states. We
motivate these concepts for affective computing tasks and demon-
strate their usefulness in learning user states especially when used
in combination.

Multi-view learning studies how data sets having co-occurring
observations can be combined. Most affective computing studies
monitor the user with several sensors or sensor channels, which
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can be considered as such co-occurring sets. Multi-view learning
refers to various strategies for learning a joint model over all
sensor data, to learn how the sources should be combined for
building optimal models. In this paper, we work with a specific
multi-view learning technique called multiple-kernel learning
(MKL) [16], which allows using multiple sensors in any kernel-
based learning algorithm while automatically revealing which
sensors are useful for solving the task. Even though considerable
effort has been put into finding out which physiological sensors
are related to which affective dimensions, this is still useful for all
practical applications with specific sensor hardware. Automatically
learning the sensor importance is especially useful when devel-
oping practical systems for out-of-laboratory conditions.

The other concept,multi-task learning (MTL), studies learning of
several prediction tasks together [5]. Within the scope of state
inference, MTL takes advantage of the data of other users by
learning from the cross-user similarities, without assuming that
the users are identical. This helps particularly when the amount of
labeled training data is limited. Alternatively, learning each output
label, such as arousal and valence, could be considered as a task.
Learning predictive models for all of the labels together is then
useful assuming that all labels are one-dimensional summaries of
a more complex unknown state of the user. The approach will be
particularly useful if the dimensions are not independent.

We present a novel kernel-based model that combines both
multi-view and multi-task aspects. It can be applied to both of the
aforementioned MTL scenarios, and it uses the MKL formulation to
make the approach multi-view. We then apply the model to two
different data collections to study the accuracy of state recogni-
tion. The first collection, taken from Koelstra et al. [22], is an
example of a laboratory-quality data. We have collected the other
data set ourselves under less constrained conditions.

The main goal of the paper is to illustrate the benefits of the
two aforementioned general purpose machine learning techniques
in affective computing applications. To this end, we show how
combining MTL and MKL within a unified model improves the
prediction performance, and also highlight how MKL automati-
cally learns the importance of individual sensors even when
solving multiple inference tasks simultaneously. We demonstrate
the models with generic features instead of carefully selecting the
sensors and features to match the particular affective inference
tasks. This highlights the main advantage of the proposed strategy:
It allows working with a wide set of sensors and tasks, without
requiring much manual labor in incorporating domain-specific
knowledge into the solutions.

2. Inferring the user state

Given the input data from P sensors, the user state inference
task consists of inferring for each data point a set of labels that
jointly characterize the state of the user. We do not assume any
particular emotional model, such as [28]. Instead, we simply
require the states to be represented by a collection of numerical
labels. The labels do not have to be independent; in fact, as will
become more apparent later, the multi-task formulation we
introduce is specifically tailored to capture correlations between
the labels. In the experimental section we use Likert-scale evalua-
tions of valence, arousal, liking, and mental workload as the labels,
but the underlying machine learning techniques would apply to
any other numerical characterizations of the state dimensions.
Even though we resort to binarization of multi-category state
labels to overcome data scarcity, extension of the presented
techniques to multi-class setups is straightforward.

We study user-specific and user-independent setups for each
learning model. The former is trained on data recorded from a

single user and assumes this person to be the eventual user of the
system, whereas the latter learns the models from M earlier users
and assumes the eventual user to be a new one. User-specific
models need to be separately customized to target users. On the
other hand, user-independent models do not require any training
data from the eventual user, and hence can be pre-trained on large
data collections.

For both scenarios, each data sample xi is represented as a

collection of vectors xi ¼ fxðmÞ
i gPm ¼ 1, one for each of the P views

(here sensors), where xðmÞ
i ARDm and Dm is the dimensionality of

the feature representation for the sensor m. The output, character-
ization of the user's state, is given as (here binary) vector of labels
yi ¼ ½yið1Þ;…; yiðTÞ�, where yiðjÞAf71g and T is the number of
labels.

All learning setups considered in this paper are multi-view, due
to the input data coming from P different sensors. MTL, in turn, can
be applied in two different ways. When considering the different
users as different but related tasks we can learn user-specific
models for all users at the same time, separately for each label.
In this case, each task takes as input the measurements taken
from a different user x, and predicts the corresponding label.
Even though the models are learned together in the spirit of multi-
task learning, the output will be a separate model for each user.
Alternatively, we can learn a single user-independent model for all
T labels at once, resulting in a MTL setup where the inputs x are
the same for all tasks but the output labels are different.

In this paper, we formulate a novel kernel-based algorithm that
performs multi-task and multi-view learning in a coupled and
efficient manner. In Sections 2.1–2.3 we review the basics of kernel
based learning and explain the earlier kernel-based multi-task and
multi-view algorithms. Finally, in Section 2.4 we introduce our
new model that combines both approaches.

2.1. Support vector machines (SVMs)

We take the standard support vector machine (SVM) [30] as a
single-task and single-view building block on which we develop
our novel multi-task multi-view learning algorithm. We denote by
fðxi; yiÞgNi ¼ 1 a sample of N independent training instances, where xi
is a D-dimensional input vector with the target output yi, and by
Φ : RD-RS a function that maps the input patterns to a preferably
higher dimensional space. The support vector machine learns a
linear discriminant that predicts the target output of an unseen
test instance x as

f ðxÞ ¼w>ΦðxÞþb;

where w contains the hyperplane parameters and b is the bias
parameter. Using the representer theorem, the discriminant in the
dual form becomes

f ðxÞ ¼ ∑
N

i ¼ 1
αiΦðxiÞ>ΦðxÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

kðxi ;xÞ

þb

where N is the training set size, k : RD � RD-R is the kernel
function that defines a similarity metric for pairs of data instances,
and α is the vector of Lagrange multipliers defined in the domain

A¼ α : ∑
Nr

i ¼ 1
αi ¼ 0; αiAR; 8 i

( )
: ð1Þ

For binary classification yiAf�1; þ1g and squared loss, the corre-
sponding objective function is

JðαÞ ¼ ∑
N

i ¼ 1
αi�

1
2

∑
N

i ¼ 1
∑
N

j ¼ 1
αiαjyiyj kðxi; xjÞþ
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