
Semi-supervised classification with pairwise constraints

Chen Gong a,b, Keren Fu a, Qiang Wub, Enmei Tu a, Jie Yang a,n

a Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, China
b School of Computing and Communications, University of Technology, Sydney, Australia

a r t i c l e i n f o

Article history:
Received 19 September 2013
Received in revised form
26 November 2013
Accepted 7 February 2014
Communicated by D. Tao
Available online 5 April 2014

Keywords:
Semi-supervised learning
Pairwise constraints
Smoothness regularizer

a b s t r a c t

Graph-based semi-supervised learning has been intensively investigated for a long history. However,
existing algorithms only utilize the similarity information between examples for graph construction, so
their discriminative ability is rather limited. In order to overcome this limitation, this paper considers
both similarity and dissimilarity constraints, and constructs a signed graph with positive and negative
edge weights to improve the classification performance. Therefore, the proposed algorithm is termed as
Constrained Semi-supervised Classifier (CSSC). A novel smoothness regularizer is proposed to make the
“must-linked” examples obtain similar labels, and “cannot-linked” examples get totally different labels.
Experiments on a variety of synthetic and real-world datasets demonstrate that CSSC achieves better
performances than some state-of-the-art semi-supervised learning algorithms, such as Harmonic
Functions, Linear Neighborhood Propagation, LapRLS, LapSVM, and Safe Semi-supervised Support Vector
Machines.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Semi-supervised learning (SSL) is widely adopted in many
situations where the labeled examples are insufficient while the
unlabeled examples are extremely abundant. Though these mas-
sive unlabeled examples do not have explicit labels, they provide
the prior of underlying data distribution, which can support
accurate classifications along with the labeled examples.

However, the unlabeled examples should be used properly with
certain assumptions, otherwise they may hurt the performance
instead. Two commonly adopted assumptions are cluster assump-
tion and manifold assumption [1]. Cluster assumption assumes that
the examples of different classes form several well-separated
clusters, and the decision boundary falls into the low density area
in the feature space. Representative algorithms include Transduc-
tive Support Vector Machines (TSVM, [2]), Multiple Kernel TSVM
[3], concaVe Semi-supervised Support Vector Machine (VS3VM,
[4]), Structural Regularized Support Vector Machines (SRSVM, [5]),
and Safe Semi-supervised Support Vector Machines (S4VM, [6]), etc.
Methods above are the variants of traditional supervised Support
Vector Machines (SVM). The only differences are on the definition
of loss function, since the hinge loss employed by traditional SVM
cannot be directly applied to the semi-supervised settings.

Manifold assumption postulates that the geometry of data
distribution is usually supported by an underlying manifold

(e.g. Riemannian manifold). The manifold can be described by a
graph, of which the examples are represented by vertices and their
similarities are measured by weighted edges. Therefore, manifold
assumption requires that the labels should vary smoothly on the
graph. In other words, if two examples are connected by a strong
edge, they tend to share similar labels. Under this assumption,
many graph-based semi-supervised learning algorithms have been
developed. Zhu et al. proposed Harmonic Functions (HF, [7]) and
related it to random walks, electric networks, and spectral graph
theory. Zhou et al. developed Local and Global Consistency (LGC,
[8]), in which the smoothness of labels are defined by the
normalized graph Laplacian. Moreover, Spectral graph partitioning
[9] formulates SSL as a graph cut problem, which aims to find a
partitioning that minimizes the defined objective function. Wang
et al. proposed Linear Neighborhood Propagation (LNP, [10]) that
assumes that each data point in the graph can be optimally
reconstructed by its neighbors. By introducing the manifold
regularizer, Belkin et al. proposed the Laplacian Support Vector
Machines (LapSVM) and Laplacian Regularized Least Squares
(LapRLS). The idea of manifold regularization was successfully
adapted to multi-label classification by multiview vector-valued
manifold regularization (MV3MR, [11]) and manifold regularized
multitask learning (MRMTL, [12]) algorithms. Other typical mani-
fold assumption-based approaches include AnchorGraph [13],
Graph Transduction via Alternative Minimization (GTAM, [14]),
and Label Propagation through Sparse Neighborhood (LPSN, [15]),
etc. In recent years, some hypergraph-based manifold learning
algorithms were developed and adopted to solve the critical
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problems in computer vision, such as image classification [16–18]
and cartoon animation [19].

However, the graph established in the methods above only
contains nonnegative edge weights. That is, only the similarities
between examples are considered for classification, and the
dissimilarity information is ignored. However, we believe that
the dissimilarity information is important for improving the
discriminative ability of semi-supervised classifiers. Therefore, this
paper aims to design a novel semi-supervised classifier that
incorporates both similarity and dissimilarity constraints between
examples. In contrast to the traditional graph-based methods
which require edge weights to be nonnegative, the weights in
our algorithm are in the range ½�1;1�. The positive weights
representing “must-links” describe how similar the two connected
examples are, and the negative weights standing for “cannot-
links” evaluate the dissimilarity between the pairwise examples.

Actually, pairwise constraints including “must-links” and “cannot-
links” have been widely adopted by various constrained clustering
[20–22], dimensional reduction [23] and metric learning algorithms
[24,25]. However, they are seldom employed to solve the semi-
supervised classification problems. In this paper, pairwise constraints
are adopted in order to improve the performance of traditional
graph-based SSL algorithms, and the proposed classifier is named as
Constrained Semi-supervised Classifier (CSSC). The most relevant
work is [26], which also incorporates the dissimilarity into the
framework of manifold regularization. However, the negative edges
in this method should be manually generated among the unlabeled
examples, which is different from CSSC that automatically constructs
the graph of signed edges without any manual assistance.

The main contributions of this paper are summarized below:

1. A novel semi-supervised classification algorithm is proposed by
incorporating both similarity and dissimilarity constraints.

2. The graph is built via similarity/dissimilarity propagation, in
which the constraints imbalance is particularly considered.

3. A convex regularization framework is developed, so that the
obtained solution is globally optimal.

The remainder of this paper is organized as follows: Section 2
constructs the signed graph with positive and negative edge
weights. Section 3 derives the regularization framework of CSSC
based on the established graph. We prove the convexity of the
proposed model in Section 4, and present the empirical validations
of CSSC and other experimental results in Section 5. Finally, a
conclusion is drawn in Section 6.

2. Graph construction

For convenience, some important notations used in the rest
of the paper are listed in Table 1. Given l labeled examples

L¼ ðx1;Y1Þ; ðx2;Y2Þ;…; ðxl;YlÞgARd � RC and u unlabeled exam-
ples U ¼ fðxlþ1;Ylþ1Þ; ðxlþ2;Ylþ2Þ;…; ðxn;YnÞgARd � RC (n¼ lþu)
drawn from the same distribution, the task of SSL is to propagate

the labels fYigli ¼ 1AR1�C in L, to the unknown labels

fYiglþu
i ¼ lþ1AR1�C in U . Here C is the total number of classes. Then

the c0-th (1rc0rC) element of label vector fYigni ¼ 1 is defined as
ðYiÞc0 ¼ 1 if xi belongs to the c0-th class, and ðYiÞc0 ¼ 0 otherwise.
Consequently, a graph G¼ 〈V; E〉 can be built where V is the vertex
set composed of all the elements in L⋃U , and E is the edge set
describing the similarity/dissimilarity between pairs of examples.

Traditionally, there are two ways to compute the nonnegative
edge weight between two examples. One is the 0–1 weight, which
simply takes the binary value from f0;1g to indicate whether an
edge exists between the two vertices or not. The other is to use the
RBF kernel, which produces a real value within ½0;1�, to represent
the similarity of examples. However, these two methods only
generate nonnegative weights, so they are not suitable to repre-
sent both “must-link” and “cannot-link” constraints. Below we
introduce a two-step approach called “balanced constraints pro-
pagation” to explicitly construct a graph with edge weights in the
range of ½�1;1�.

In the first step, we establish a traditional unsigned graph ~G
with nonnegative edge weights. K nearest neighborhood (K-NN)
graph is adopted because sparse graph usually leads to better
performance [27]. The edge weights mij (1r i; jrn) of ~G are
computed by using the RBF kernel mij ¼ expð‖xi�xj‖2=ð2s2ÞÞ
(s is the kernel width), and thus we have the adjacency matrix
M of ~G with ðMÞij ¼mij. Moreover, we define a diagonal matrix ~D in

which the i-th diagonal element ~dii is calculated as ~dii ¼∑n
j ¼ 1mij.

Therefore, M can be further normalized by M ¼ ~D
�1=2

M ~D
�1=2

, so
that the elements mij of M satisfy ∑n

j ¼ 1mij ¼ 1 for 1r irn [8].
In the second step, we aim to build a signed graph G that

incorporates both positive and negative constraints based on M.
It is obvious that lðl�1Þ=2 definitely correct constraints are already
available based on the l labeled examples, and they are recorded
by the similarity set S and dissimilarity set D:

S ¼ fðxi; xjÞjxi and xj come from the same classg

D¼ fðxi; xjÞjxi and xj come from different classesg:

The aim of our proposal is to propagate the limited available
elements in S and D, to the remaining pairs of examples. This
process is called “balanced constraints propagation”.

To facilitate the mathematical manipulations, we use the

matrix W
_ ð0Þ

ARn�n to encode the pairwise constraints in S and
D, namely

ðW
_ ð0Þ

Þij ¼W
_ ð0Þ

ij ¼
1 ðxi; xjÞAS or i¼ j

�γ ðxi; xjÞAD
0 ðxi; xjÞ is not specified

8><
>: : ð1Þ

In (1), γ ¼ a=b where a¼ jSjþn, b¼ jDj and j � j represents the size

of a set. Note that we set ω
_ ð0Þ
ij ¼ �γ rather than �1 to avoid the

constraints imbalance. In fact, if jDj is very small, the element “1”

in W
_ ð0Þ

will be much more than the element “0” because all the
diagonal elements are 1s, thus the “must-links” may dominate the
propagation process, which significantly weakens the propagation
“strength” of the “cannot-links”. Alternatively, more negative

constraints can be added to W
_ ð0Þ

based on the prior knowledge,
so the negative constraints can significantly outnumber the
positive constraints sometimes. Therefore, γ assigns larger weight

Table 1
Important notations used in this paper.

Notation Description Notation Description

xi The ith example W
_ The adjacency matrix of G

Yi The label vector of xi W The matrix recording

the values of jðW
_

Þijj
K The number of

neighborhoods
S Indicator matrix

~G Unsigned graph I Identity matrix
G Signed graph F The obtained label matrix
M The adjacency matrix of ~G H Hessian matrix

M Normalized M ~L Generalized graph
Laplacian
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