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a b s t r a c t

In this work a new model for online clustering named Incremental kernel spectral clustering (IKSC) is
presented. It is based on kernel spectral clustering (KSC), a model designed in the Least Squares Support
Vector Machines (LS-SVMs) framework, with primal-dual setting. The IKSC model is developed to
quickly adapt itself to a changing environment, in order to learn evolving clusters with high accuracy.
In contrast with other existing incremental spectral clustering approaches, the eigen-updating is
performed in a model-based manner, by exploiting one of the Karush–Kuhn–Tucker (KKT) optimality
conditions of the KSC problem. We test the capacities of IKSC with some experiments conducted on
computer-generated data and a real-world data-set of PM10 concentrations registered during a pollution
episode occurred in Northern Europe in January 2010. We observe that our model is able to precisely
recognize the dynamics of shifting patterns in a non-stationary context.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In many real-life applications we face the ambitious challenge
of online clustering of non-stationary data. Voice and face recogni-
tion, community detection of evolving networks such as the World
Wide Web or the metabolic pathways in biological cell, object
tracking in computer vision, represent just few examples. There-
fore researchers perceived the need of developing clustering
methods that can model the complex dynamics of evolving
patterns in a real-time fashion. Indeed, in the recent past many
adaptive clustering models with different inspiration have been
proposed: evolutionary spectral clustering techniques [7,9,18,20],
self-organizing time map [28], dynamic clustering via multiple
kernel learning [27], incremental K-means [8] constitute some
examples. Here we focus our attention on the family of the
Spectral Clustering (SC) approaches [25,31,10], which has shown
its practical success in many application domains. SC is an off-line
algorithm, and the above-cited attempts to make it applicable to
dynamic data-sets, although quite appealing, are at the moment
not very computationally efficient. In [26] and more recently in

[11], the authors propose some incremental eigenvalue solutions
to continuously update the initial eigenvectors found by SC. In this
paper, we follow this direction, but with an important difference.
The incremental eigen-update we introduce is model-based and
cast in a machine learning framework, since our core model is
kernel spectral clustering (KSC, [3]). KSC is an LS-SVM formulation
[29] of Spectral Clustering with two main advantages: an orga-
nized model-selection procedure based on several criteria (BLF,
Modularity, AMS, [3,17,19]) and the extension of the clustering
model to out-of-sample data. Moreover, it can scale to large data
as it has been shown in [23,24] and very sparse models can be
constructed [22,2]. In KSC a clustering model can be trained on
a subset of the data and then applied to the rest of the data in
a learning framework. The out-of-sample extension allows then to
predict the memberships of a new point thanks to the previously
learned model. The out-of-sample extension alone, without the
need of ad-hoc eigen-approximation techniques like the ones
proposed in [26] and[11], can be used to accurately cluster stationary
data-streams. For instance, in [16], KSC has been applied for online
fault detection of an industrial machine. In this work KSC was trained
offline to recognize two main working regimes, namely good and
faulty state. Then it was used in an online fashion via the out-of-
sample extension to raise an early warning when necessary.

However, if the data are generated according to some distribu-
tion which change over time (i.e. non-stationary), the initial KSC
model must be updated. In order to solve this issue we introduce
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the Incremental Kernel Spectral Clustering Algorithm (IKSC).
The IKSC method takes advantage of the work presented in [4]
to continuously adjust the initial KSC model over-time, in order to
learn the complex dynamics characterizing the non-stationary
data.

The remainder of this paper is structured as follows: in Section
2 we briefly recall the KSC model. Section 3 introduces the new
IKSC algorithm. Section 4 describes the data-sets used in the
experiments. In Section 5 we discuss the simulation results and we
compare our method with incremental K-means (IKM).To better
understand our technique and the experimental findings we
advice the readers to take a look at the demonstrative videos
present in the supplementary material of this paper. Finally,
Section 6 concludes the paper.

2. Kernel spectral clustering (KSC)

Spectral clustering methods use the eigenvectors of the graph
Laplacian to unfold the data manifold and properly group the data-
points. In contrast with classical spectral clustering, KSC is con-
sidered in a learning framework. This allows the out-of-sample
extension of the clustering model to test points in a straightfor-
ward way. With training data D¼ fxigNi ¼ 1; xiARd and the number
of clusters k, the kernel spectral clustering optimization problem
can be stated in the following way [3]:

min
wðlÞ ;eðlÞ ;bl

1
2

∑
k�1

l ¼ 1
wðlÞT wðlÞ � 1

2N
∑
k�1

l ¼ 1
γle

ðlÞT D�1eðlÞ ð1Þ

such that eðlÞ ¼ΦwðlÞ þbl1N : ð2Þ
This is a weighted kernel PCA formulation, being the weighting
matrix equal to the degree matrix D associated to the training
kernel matrix. The objective consists of minimizing the regular-
ization terms and maximizing the weighted variance of the
projections of the data points in the feature space. The score
variables1 are named eðlÞ ¼ ½eðlÞ1 ;…; eðlÞN �T , l¼ 1;…; k�1 indicates the
number of score variables needed to encode the k clusters to find,
D�1ARN�N is the inverse of the degree matrix D, Φ is the N � dh
feature matrix Φ¼ ½φðx1ÞT ;…;φðxNÞT � and γlARþ are regulariza-
tion constants. The multiway clustering model in the primal space
is expressed by a set of k�1 binary problems, which are combined
in an Error Correcting Output Code (ECOC) encoding scheme:

eðlÞi ¼wðlÞTφðxiÞþbl; i¼ 1;…;N; l¼ 1;…; k�1: ð3Þ

where wðlÞARdh is the parameter vector in the primal space
associated with the l-th binary clustering, bl are bias terms, φ :

Rd-Rdh is the mapping of the input points xi into a high-
dimensional feature space of dimension dh. The projections eðlÞi
represent the latent variables of the group of k�1 binary cluster-
ing indicators given by signðeðlÞi Þ. Thus every point xi is associated
with a latent variable ½eð1Þi ;…; eðk�1Þ

i � which lives in the low-
dimensional space spanned by wðlÞ. The set of binary indicators
signðeðlÞi Þ; i¼ 1;…;N; l¼ 1;…; k�1 form a code-book CB¼ fcpgkp ¼ 1,
where each code-word is a binary word of length k�1 represent-
ing a cluster.

As for all the kernel-based methods, since an explicit formula of
the feature map φð�Þ is in general unknown, the dual of problem
(1) is derived. As a consequence, we go from the parametric
representation of the clustering model expressed by Eq. (3) to a
non-parametric representation in the dual space denoted by (5).

Here only dot products between the mapped points in φð�Þ appear,
which can be easily computed using the kernel trick derived by the
Mercer theorem: φðxiÞTφðxjÞ ¼ Kðxi; xjÞ. In Fig. 1 for the sake of
clarity we illustrate, in the case of a synthetic dataset consisting of
three intertwined spirals, the points mapped in the space of the
eigenvectors αðlÞ and the space of the latent variables eðlÞ.

The Lagrangian associated with the primal problem, written in
matrix form, is

LðwðlÞ; eðlÞ; bl;αðlÞÞ ¼ 1
2

∑
k�1

l ¼ 1
wðlÞT wðlÞ � 1

2N
∑
k�1

l ¼ 1
γle

ðlÞT D�1eðlÞ

� ∑
k�1

l ¼ 1
αðlÞT ðeðlÞ �ΦwðlÞ �bl1NÞ

where αðlÞ are the Lagrange multipliers. The KKT optimality
conditions are the following:

∂L
∂wðlÞ ¼ 0-wðlÞ ¼ΦTαðlÞ;

∂L
∂eðlÞ

¼ 0-αðlÞ ¼ γl
N
D�1eðlÞ;

∂L
∂bl

¼ 0-1T
Nα

ðlÞ ¼ 0;

∂L
∂αðlÞ ¼ 0-eðlÞ �ΦwðlÞ �bl1N ¼ 0:

Once we have solved the KKT conditions for optimality, we can
derive the following dual problem:

D�1MDΩαðlÞ ¼ λlαðlÞ ð4Þ
where Ω is the kernel matrix with ij-th entry Ωij ¼ Kðxi; xjÞ ¼
φðxiÞTφðxjÞ, D is the related graph degree matrix which is diagonal
with positive elements Dii ¼∑jΩij, MD is a centering matrix
defined as

MD ¼ IN�
1

1T
ND

�11N
1N1

T
ND

�1;

αðlÞ are the dual variables, λl ¼N=γl and K : Rd � Rd-R is the
kernel function and captures the similarity between the data-
points. The clustering model in the dual space evaluated on
training data becomes

eðlÞ ¼ΩαðlÞ þbl1N ; l¼ 1;…; k�1: ð5Þ
The eigenvectors αðlÞ express an embedding of the input data that
reveals the underlying clustering structure. They are linked to the
wðlÞ through the first KKT condition.

In order to cope with truly non-stationary data arriving over
time, the initial αðlÞ must be modified in response to the new
inputs. This issue is tackled by means of the incremental kernel
spectral clustering algorithm, which will be explained in detail in
the next section.

The out-of-sample extension is performed by the ECOC decod-
ing scheme. In the decoding process the cluster indicators found in
the validation/test stage are compared with the code-book and the
nearest code-word indicated by the Hamming distance is selected.
The cluster indicators are the results of binarizing the score
variables for test points:

signðeðlÞtestÞ ¼ signðΩtestαðlÞ þbl1NtestÞ ð6Þ
with l¼ 1;…; k�1. Ωtest is the Ntest � N kernel matrix evaluated
using the test points with entriesΩtest;ri ¼ Kðxtestr ; xiÞ, r¼ 1;…;Ntest,
i¼ 1;…;N.

In the first two synthetic experiments that will be presented in
Section 4.1.1 (Drifting Gaussians and Merging Gaussians) we use
the RBF kernel function defined by Kðxi; xjÞ ¼ expð�‖xi�xj‖22=s2Þ.
The symbol s indicates the bandwidth parameter and xi is the
i-th data point. In the analysis of the third synthetic data

1 We use interchangeably the terms projections, score variables, latent
variables to name the eðlÞ .
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