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ABSTRACT

Recently, as the building block of deep generative models such as Deep Belief Networks (DBNs),
Restricted Boltzmann Machines (RBMs) have attracted much attention. RBM is a Markov Random Field
(MRF) associated with a bipartite undirected graph which is famous for powerful expression and
tractable inference. While training an RBM, we need to sample from the model. The larger the mixing
rate is, the smaller the bias of the samples is. However, neither Gibbs sampling based training methods
such as Contrastive Divergence (CD) nor Parallel Tempering based training methods can achieve
satisfying mixing rate, which causes poor rendering of the diversity of the modes captured by these
trained models. This property may hinder the existing methods to approximate the likelihood gradient.
In order to alleviate this problem, we attempt to introduce Tempered Transition, an advanced tempered
Markov Chain Monte Carlo method, into training RBMs to replace Gibbs sampling or Parallel Tempering
for sampling from RBMs. Experimental results show that our proposed method outperforms the existing

methods to achieve better mixing rate and to help approximate the likelihood gradient.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Learning algorithms for deep architectures such as Deep Belief
Networks [1,2] and Deep Boltzmann Machines [3] have recently
been proposed and successfully applied to various machine learn-
ing tasks such as image processing [4,5], speech recognition [6,7],
natural language processing [8] and so on. Deep neural networks
are distinguished from shallow architectures such as Support
Vector Machine (SVM) by a large number of layers of neurons
and characterized by using layer-wise unsupervised pre-training
to learn a more accurate model.

Restricted Boltzmann Machines (RBMs) [9-12] can be inter-
preted as neural network models which consist of two types of
units called visible neurons and hidden neurons. And there are
only connections between different types of neurons, therefore
RBMs can be divided into two layers. The first layer is constituted
by the visible neurons and corresponds to an observation, the
second layer is constituted by the hidden neurons and models
the dependencies between the components of the observation.
So, RBMs can be viewed as non-linear feature detectors [9,10].
By stacking RBMs, such multistage learning methods have been
empirically confirmed as good as, or in many cases better than,
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conventional learning methods, such as back propagation with
random initialization [1,3,13-15]. Therefore, RBMs play a very
important role in deep learning and it is necessary to explore
more efficient method for learning RBMs.

Although RBMs are famous for their powerful expression and
tractable inference [16], training an RBM can be difficult in
practice. The difficulties come from the intractability of the log-
likelihood gradient which is composed of a positive phase term
and a negative phase term. Calculating the exact value of the
negative phase term requires unbiased sampling from the model
distribution for a long time to ensure convergence to stationarity,
which is of exponential complexity. Therefore, additional approx-
imations are usually introduced into the learning methods to yield
more efficient algorithms.

Gibbs sampling based approximations of the negative phase
term in the log-likelihood gradient often lead to divergence of the
training procedure and result in spurious probability modes far
from the training data [17]. Therefore, RBM learning algorithms
based on Gibbs sampling, such as Contrastive Divergence show
very poor mixing, as we can see in Section 5. Parallel Tempering
based approximations can suppress the diverging problem, but the
bias of the approximations still exists. Neither the learning algo-
rithms based on Gibbs sampling nor the ones based on Parallel
Tempering are ideal enough to train full-fledged generative
models of data because of the poor mixing rate.

To improve the mixing rate of negative phase, we propose
an RBM training algorithm based on Tempered Transition [18],
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another extended ensemble Monte Carlo method besides Parallel
Tempering [19], which is characterized by strong ability of hand-
ling multimodal distributions. Different from existing methods, we
sample from RBM distribution from multiple chains in serial, but
always keep current state in the objective distribution. The
experimental results on MNIST data set of handwritten digits
show that the training algorithm based on Tempered Transition
obtains better mixing rate than existing methods and improves
the learning procedure to some extent.

The rest part of this paper is organized as follows. The related
works is described in Section 2. The structure of the RBMs and log-
likelihood gradient approximation for training RBMs are intro-
duced in Section 3. The details of our proposed approach based on
Tempered Transition are described in Section 4. In Section 5, we
show the experimental results of our approach on the MNIST data
set. Finally, we conclude the paper and discuss the directions of
the future work.

2. Related works

Recently, quite a few efforts are made on training RBMs. Most
of the existing methods are based on Gibbs sampling and some are
based on Parallel Tempering, as described below.

The Contrastive Divergence (CD) algorithm [11,20,21] is the
most popular learning algorithm for RBMs, which approximates
the negative phase term of log-likelihood gradient by sampling
from a Gibbs chain that only runs for k steps (and usually k=1)
starting from the observed training example. The strategy of CD is
effective in learning representations or features of data in practice,
especially when k is larger. However, the data-centric focus of CD
training can yield biased estimates of the gradient and the
theoretical results from Ref. [22] can explain this phenomenon.

The Persistent Contrastive Divergence (PCD) algorithm [23] was
proposed to improve upon CD’s limitation (which is a kind of biased
estimate method). Similar to CD, PCD approximates the negative
phase of the gradient with samples drawn from a Gibbs chain runs
for k steps. However, in PCD, the Gibbs chain is initialized by the state
in which it ends for the previous model instead of the training
sample. The fundamental idea underlying PCD is that one could
assume that the initialization is close to the model distribution, even
though the model has changed a bit in the parameter update.
However, the reliance on a single persisting Markov chain often
leads to degenerative training [24]. When faced with multimodal
target distributions, Gibbs sampling used in the PCD negative phase
estimation is easily to be stuck in the local optimum, leading to a
chain that mixes slowly, over-representing certain modes of the
distribution while under-representing others. This produces a biased
estimate of the gradient, and the mini-batch strategy is only helpful
for small-scale problems with simple distributions [25].

Fig. 1. The undirected graph of an RBM with n hidden and m visible variables.

The Fast Persistent Contrastive Divergence (FPCD) algorithm
[24] attempts to improve upon PCD’s mixing properties by
introducing a group of additional parameters called fast para-
meters that are only used for sampling. FPCD tries to get out of any
single mode of the distribution by these fast learning parameters
and achieves better results in approximating the RBM gradient
which are reported in Ref. [24]. However, neither PCD nor FPCD
seem to enlarge the mixing rate (or decrease the bias of the
approximation) sufficiently to avoid the divergence problem as
can be seen in the empirical analysis in Refs. [17,25].

The Parallel Tempering [26] based training algorithm [27,28]
replaces the single Gibbs chain used in PCD with a series of chains
implementing a Parallel Tempering scheme. Parallel Tempering is
one of a collection of extended ensemble Monte Carlo methods
[19] introducing multiple versions of the same distribution under
different temperatures into the sampling procedure. By sampling
from the multiple chains and switching the states among the
chains under different temperatures, the sampling procedure can
get rid of the local maxima by means of smoothed distribution
under high temperature. When approximating the negative phase
term of RBM gradient, Parallel Tempering samples from a series of
chains in parallel and switches the states between distributions
under consecutive temperatures. The results from Refs. [27,28]
show that Parallel Tempering improves mixing between multiple
modes of the distribution and helps approximate the RBM gra-
dient. However, only switching the states between distributions
under consecutive temperatures is not enough to confirm shaking
off the control of the local maxima.

In order to alleviate the problem listed above, we propose an RBM
training method based on Tempered Transition [18,29], another
extended ensemble Monte Carlo method besides Parallel Tempering
[19]. Similar to Parallel Tempering, Tempered Transition approxi-
mates the negative phase term of the RBM gradient by sampling
from the multiple chains under different temperatures. However,
Tempered Transition moves from the desired distribution to easily-
sampled distribution which is under high temperatures, and back to
the desired distribution. This strategy is better for getting rid of local
maxima to improve mixing and to help training RBMs.

3. Training of restricted Boltzmann machines
3.1. Restricted Boltzmann machines

A Restricted Boltzmann Machine is a restricted type of Boltzmann
Machines (BM) which have been introduced as bidirectionally
connected networks of stochastic processing units [9,24]. A BM can
be used to learn important aspects of an unknown probability
distribution based on samples from this distribution. However, there
are practical limitations in using BM due to difficult and time-
consuming learning process. RBM is proposed to alleviate this problem
by imposing restrictions on the network topology [28].

Specifically, an RBM is a Markov Random Field (MRF) asso-
ciated with a bipartite undirected graph as shown in Fig. 1. There
are m visible units v = (vq, ..., vyy) to represent observable data and
n hidden units h=(hy,...,h;) to capture dependencies between
observed variables. We focus on binary RBMs where the random
variables (v, h) take values from {0, 1}. The probability distribution
of (v, h) configuration is given by (1).

_ 1 —Ev.h)
p(v,h)= 7€ (1)

And the probability of observable variables v is denoted as
follows:

1
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