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a b s t r a c t

This paper analyzes and improves an advanced multidimensional scaling method, known as locally
multidimensional scaling, which assumes that high-dimensional data lie on a low-dimensional
manifold. The method preserves local distances in the manifold by using classical scaling on a set of
clusters in the high-dimensional data. These clusters are called neighborhoods, and the success of the
method depends on the proper selection of these neighborhoods. At present, a neighborhood set is
difficult to tune, and even if done well, the method may not function properly in dealing with noisy data.
Our proposal utilizes clustering in a diffusion map, and thereby improves the original method in two
ways. First, neighborhood selection is easier to tune, and second, the neighborhoods chosen enable the
improved method to work under noisy data conditions. Our experiments demonstrate better tuning and
robustness-to-noise results compared with the original method and some other existing multidimen-
sional scaling methods on synthetic and real data sets.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multidimensional scaling (MDS) methods [1] assume that a set
of N objects is under consideration and that between each pair of
objects ði; jÞ a dissimilarity measure dij exists. MDS searches for
points in a low dimensional configuration in which the distances
d0ij between the points match in the best way possible the original
dissimilarities dij. In this paper, the objects are represented by N
points X ¼ fxigNi ¼ 1 in a p-dimensional space xiARp, and the goal of
MDS is to find a q-dimensional set of points Y ¼ fyigNi ¼ 1, yiARq for
qop, which optimizes a given criterion in order to preserve the
original dissimilarities dij (i.e., distances dij between xi; xjARp) by
means of d0ij, which are the distances between points in a low
dimensional space. In most applications, q⪡p is used, and for
visualization purposes q¼2 or 3. Moreover, we assume that
distances between pairs ðyi; yjÞ are measured by a squared Eucli-
dean norm of the vectors' difference (i.e., yi�yj), denoted as
d02ij ¼ ‖yi�yj‖2; i; j¼ 1;…;N. This norm is suitable [2, page 16] for
identifying clusters and other data structures by means of visual
data inspection in low dimensional space. In classical scaling,
originally formulated by Young and Mouseholder [3] and by
Gower [4], the dissimilarities between the points X ¼ fxigNi ¼ 1,
xiARp are measured by d2ij ¼ ‖xi�xj‖2. This makes it possible to
find a linear mapping yi ¼ Axi that preserves the distances in the

sense of a minimum sum of squared errors ∑ijðd2ij�d02ij Þ2. Classical
scaling is usually too restrictive in real-world applications [5, Sec. 1],
which creates the need for nonlinear dimensionality reduction
methods [6].

This paper studies and improves locally multidimensional scal-
ing (LMDS) [5], based on the assumption that the original data
points X ¼ fxigNi ¼ 1, xiARp lie on a q-dimensional manifold. This
assumption is utilized in nonlinear dimensionality reduction
methods [6–14]. LMDS produces a q-dimensional set of points
Y ¼ fyigNi ¼ 1, yiARq, which preserves local distances on the mani-
fold to the maximum degree possible, using a sequential applica-
tion of classical scaling. In the first stage of LMDS, a set
F ¼ fXmgMm ¼ 1 comprising M overlapping clusters, which lie on the
manifold and cover X, are created using an algorithm [5, Sec. 4].
In the terminology of LMDS, the clusters Xm are called neighbor-
hoods. In the second stage of LMDS, each neighborhood is mapped
by means of classical scaling Am : Xm-Y 0

m, which has a projection
matrix Am, while Y 0

m is known as the patch of Xm. In the third stage,
the patches Y 0

m are translated, scaled and rotated by linear
transformations, which preserve to the maximum degree possible
the position of the points in Y 0

m, corresponding to the overlapping
regions of neighborhoods Xm. Then, from the transformed Y 0

m, the
final low-dimensional data configuration Y ¼ fyigNi ¼ 1, yiARq is
created. The procedure for creating Y from patches Y 0

m is called
alignment and is explained in [5, Sec. 3].

As in the original LMDS paper, we present it on a synthetic two-
dimensional (2D) manifold in three-dimensional (3D) space. This is
created using a non-linear transformation (which we refer to as
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“rolling”) of a plane into 3D space. In Fig. 1(a), we present
uniformly distributed points on a 2D manifold. These points are
generated using a procedure explained in [5, Sec. 5]. In this paper,
we refer to them as swiss-roll points. Fig. 1(b) presents these points
in the plane prior to rolling. A schematic illustration of the patches
Y 0
m obtained by LMDS is shown in Fig. 1(a). The points in patches

Y 0
m lie within planes, which are spanned on the row vectors of the

local classical scaling projection matrices Am. In Fig. 1(a), these
planes are marked by ellipses. The final data configuration
Y ¼ fyigNi ¼ 1 obtained by the LMDS alignment procedure is shown
in Fig. 1(c), which is similar to the embedded points in the plane
prior to rolling (Fig. 1(b)). This demonstrates the efficiency of
LMDS for discovering the manifold in the example described
above.

A key step in the LMDS method is the proper creation of
overlapping neighborhoods F ¼ fXmgMm ¼ 1. In this paper, we pro-
pose an algorithm for obtaining F ¼ fXmgMm ¼ 1, which improves
LMDS in two ways: neighborhood selection is easier to tune, and
the neighborhoods chosen enable the improved method to func-
tion under noisy data conditions.

The rest of this paper is organized as follows. Section 2 explains
the need for improving LMDS. In Section 3, we propose an
algorithm for creating neighborhoods F ¼ fXmgMm ¼ 1 by performing
clustering in a diffusion map (DM) to obtain F ¼ fXmgMm ¼ 1, which
improves LMDS under conditions of noisy data. Section 4 presents
experiments on synthetic and real data sets. The results confirm the
improvement obtained by utilizing our LMDS relative to the original
LMDS [5] as well as some other dimensionality reduction methods,
namely, ISOMAP [7], MVU [9], LTSA [11] and CB-LMDS [13].

2. The motivation for improving LMDS

In this section, we first describe the functioning of the original
algorithm [5, Sec. 4] currently in use for obtaining overlapping
neighborhoods F ¼ fXmgMm ¼ 1. We then highlight some of the
algorithm's drawbacks , which provide motivation for the need
to improve it.

2.1. The algorithm in the original LMDS method used for creating
neighborhoods F ¼ fXmgMm ¼ 1

The original LMDS algorithm [5, Sec. 4] first produces N
neighborhoods ~F ¼ f ~Xig

N
i ¼ 1 for each point in the original data set

X ¼ fxigNi ¼ 1, xiARp, where ~Xi comprises K points1 with the smallest
Euclidean distances to xi (K is a user supplied parameter of LMDS).

It then creates a set of overlapping clusters F ¼ fXmgMm ¼ 1 for MoN
by iteratively choosing elements from ~F ¼ f ~Xig

N
i ¼ 1. In the initial

iteration, the first neighborhood, denoted as X1, is randomly
selected. Then, other neighborhoods Xm; m¼ 2;3;…;M, are
sequentially selected from ~F . The algorithm maintains the overlap
of the current Xm and previous F at2 α�100% ð0oαo1Þ (where
α is another user supplied parameter of LMDS) and terminates when
F covers all points in X. In Fig. 2, three iterations of the algorithm
are presented for points in 2D space using the setting K¼12 and
α¼0.25. This means that ~Xi has twelve points and an overlap of
three points (12�0.25¼3) between the current Xm and the
previous F. Fig. 2(a) presents the first neighborhood X1, while
Fig. 2(b) presents the second X2, which overlaps X1 at α�100%
(i.e., in the figure with three common points). There may be
several X2 candidates with the same degree of overlap. In this case,
the algorithm selects one of them randomly. Fig. 2(c) shows the
third iteration, in which X3 is added. As previously, X3 is selected
randomly from several X3 candidates.

It should be noted that the tuning parameters α and K must be
chosen carefully. Trials with various α and K can be conducted,
followed by a visual examination of the final low-dimensional data
configuration Y for q¼2 or 3. When q43, other research should be
conducted, such as an assessment of the accuracy of clustering and/
or evaluation of classification algorithms. When there are large α
values (i.e., high overlapping between current Xm and previous F),
the algorithm may terminate before covering all data points in X.
For small α (i.e., those barely overlapping between current Xm and
F), the LMDS alignment procedure may prove incapable of function-
ing, because of the need to resolve an ill-posed optimization
problem (explained in [5, page 443, paragraph 3]). The parameter
K, which is the number of points in ~Xi, has a considerable impact on
the final low-dimensional configuration Y. For K that are too large or
small, the local geometry of the manifold can be lost.

2.2. Drawbacks of the original LMDS algorithm for creating
neighborhoods F ¼ fXmgMm ¼ 1

In this section, we explain two LMDS drawbacks. First, in order
to find a suitable low-dimensional configuration Y, the user must
conduct trials on a large grid of K and α values, in addition to
different first neighborhoods X1. Second, LMDS performs poorly
under conditions of noisy data.

Fig. 1. LMDS used on swiss-roll points. (a) Schematic presentation of patches Y 0
m , marked by ellipses, which are spanned on the row vectors of local classical scaling

projection matrices Am, (b) scattered points in the plane prior to rolling and (c) the final configuration Y ¼ fyigNi ¼ 1, created by using the LMDS alignment procedure.

1 In the general description of the current LMDS, neighborhoods ~X i are allowed
to be of different sizes. In this paper, an identical number K of points in ~X i is used in
order to remain consistent with the original paper's experiments [5, Sec. 5].

2 For the general case, entailing neighborhoods ~X i of different sizes, the
algorithm [5, Sec. 4] chooses a candidate neighborhood that overlaps the previous
F at a minimum degree of α�100% and contains the maximum number of
uncovered data points.
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