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a b s t r a c t

We consider supervised dimension reduction (SDR) for problems with discrete inputs. Existing methods
are computationally expensive, and often do not take the local structure of data into consideration when
searching for a low-dimensional space. In this paper, we propose a novel framework for SDR with the
aims that it can inherit scalability of existing unsupervised methods, and that it can exploit well label
information and local structure of data when searching for a new space. The way we encode local
information in this framework ensures three effects: preserving inner-class local structure, widening
inter-class margin, and reducing possible overlap between classes. These effects are vital for success in
practice. Such an encoding helps our framework succeed even in cases that data points reside in a
nonlinear manifold, for which existing methods fail.

The framework is general and flexible so that it can be easily adapted to various unsupervised topic
models. We then adapt our framework to three unsupervised models which results in three methods for
SDR. Extensive experiments on 10 practical domains demonstrate that our framework can yield scalable
and qualitative methods for SDR. In particular, one of the adapted methods can perform consistently
better than the state-of-the-art method for SDR while enjoying 30–450 times faster speed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In supervised dimension reduction (SDR), we are asked to find a
low-dimensional space which preserves the predictive information of
the response variable. Projection on that space should keep the
discrimination property of data in the original space. While there is
a rich body of researches on SDR, our primary focus in this paper is on
developing methods for discrete data. At least three reasons motivate
our study: (1) current state-of-the-art methods for continuous data
are really computationally expensive [1–3], and hence can only deal
with data of small size and low dimensions; (2) meanwhile, there are
excellent developments which can work well on discrete data of huge
size [4,5] and extremely high dimensions [6], but are unexploited for
supervised problems; (3) further, continuous data can be easily
discretized to avoid sensitivity and to effectively exploit certain
algorithms for discrete data [7].

Topic modeling is a potential approach to dimension reduction.
Recent advances in this new area can deal well with huge data of
very high dimensions [4–6]. However, due to their unsupervised

nature, they do not exploit supervised information. Furthermore,
because the local structure of data in the original space is not
considered appropriately, the new space is not guaranteed to preserve
the discrimination property and proximity between instances. These
limitations make unsupervised topic models unappealing to super-
vised dimension reduction.

Investigation of local structure in topic modeling has been initiated
by some previous researches [8–10]. These are basically extensions of
probabilistic latent semantic analysis (PLSA) by Hoffman [11], which
take local structure of data into account. Local structures are derived
from nearest neighbors, and are often encoded in a graph. Those
structures are then incorporated into the likelihood function when
learning PLSA. Such an incorporation of local structures often results in
learning algorithms of very high complexity. For instances, the
complexity of each iteration of the learning algorithms by Wu et al.
[8] and Huh and Fienberg [9] is quadratic in the size M of the training
data; and that by Cai et al. [10] is triple in M because of requiring a
matrix inversion. Hence these developments, even though often being
shown to work well, are very limited when the data size is large.

Some topic models [12–14] for supervised problems can do
simultaneously two nice jobs. One job is derivation of a meaningful
space which is often known as “topical space”. The other is that
supervised information is explicitly utilized by max-margin approach
[14] or likelihood maximization [12]. Nonetheless, there are two
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common limitations of existing supervised topic models. First, the
local structure of data is not taken into account. Such an ignorance
can hurt the discrimination property in the new space. Second,
current learning methods for those supervised models are often very
expensive, which is problematic with large data of high dimensions.

In this paper, we approach to SDR in a novel way. Instead of
developing new supervised models, we propose the two-phase
framework which can inherit scalability of recent advances for
unsupervised topic models, and can exploit label information and
local structure of the training data. The main idea behind the
framework is that we first learn an unsupervised topic model to
find an initial topical space; we next project documents on that
space exploiting label information and local structure, and then
reconstruct the final space. To this end, we employ the Frank–
Wolfe algorithm [15] for fast doing projection/inference.

The way of encoding local information in this framework ensures
three effects: preserving inner-class local structure, wide-
ning inter-class margin, and reducing possible overlap between
classes. These effects are vital for success in practice. We find that
such encoding helps our framework succeed even in cases that data
points reside in a nonlinear manifold, for which existing methods
might fail. Further, we find that ignoring either label information (as in
[9]) or manifold structure (as in [14,16]) can significantly worsen
quality of the low-dimensional space. This finding complements
a recent theoretical study [17] which shows that, for some semi-
supervised problems, using manifold information would definitely
improve quality.

Our framework for SDR is general and flexible so that it can be
easily adapted to various unsupervised topic models. To provide
some evidences, we adapt our framework to three models:
probabilistic latent semantic analysis (PLSA) by Hoffman [11], latent
Dirichlet allocation (LDA) by Blei et al. [18], and fully sparse topic
models (FSTM) by Than and Ho [6]. The resulting methods for SDR
are respectively denoted as PLSAc, LDAc, and FSTMc. Extensive
experiments on 10 practical domains show that PLSAc, LDAc, and
FSTMc can perform substantially better than their unsupervised
counterparts.2 They perform comparably or better than existing
methods that base either on max-margin principle such as
MedLDA [14] or on manifold regularization without using labels
such as DTM [9]. Further, PLSAc and FSTMc consume significantly
less time than MedLDA and DTM to learn good low-dimensional
spaces. These results suggest that the two-phase framework pro-
vides a competitive approach to supervised dimension reduction.

ORGANIZATION: In the next section, we describe briefly some nota-
tions, the Frank–Wolfe algorithm, and related unsupervised topic
models. We present the proposed framework for SDR in Section 3.
We also discuss in Section 4 the reasons why label information and
local structure of data can be exploited well to result in good methods
for SDR. Empirical evaluation is presented in Section 5. Finally, we
discuss some open problems and conclusions in the last section.

2. Background

Consider a corpus D¼ fd1;…;dMg consisting of M documents
which are composed from a vocabulary of V terms. Each document
d is represented as a vector of term frequencies, i.e. d¼
ðd1;…; dV ÞARV , where dj is the number of occurrences of term j
in d. Let fy1;…; yMg be the class labels assigned to those docu-
ments. The task of supervised dimension reduction (SDR) is to find a
new space of K dimensions which preserves the predictiveness of

the response/label variable Y. Loosely speaking, predictiveness
preservation requires that projection of data points onto the new
space should preserve separation (discrimination) between classes
in the original space, and that proximity between data points is
maintained. Once the new space is determined, we can work with
projections in that low-dimensional space instead of the high-
dimensional one.

2.1. Unsupervised topic models

Probabilistic topic models often assume that a corpus is
composed of K topics, and each document is a mixture of those
topics. Example models include PLSA [11], LDA [18], and FSTM [6].
Under a model, each document has another latent representation,
known as topic proportion, in the K-dimensional space. Hence topic
models play a role as dimension reduction if KoV . Learning a
low-dimensional space is equivalent to learning the topics of a
model. Once such a space is learned, new documents can be
projected onto that space via inference. Next, we describe briefly
how to learn and to do inference for three models.

2.1.1. PLSA
Let θdk ¼ PðzkjdÞ be the probability that topic k appears in

document d, and βkj ¼ PðwjjzkÞ be the probability that term j
contributes to topic k. These definitions basically imply that
∑K

k ¼ 1θdk ¼ 1 for each d, and ∑V
j ¼ 1βkj ¼ 1 for each topic k. The

PLSA model assumes that document d is a mixture of K topics, and
PðzkjdÞ is the proportion that topic k contributes to d. Hence the
probability of term j appearing in d is PðwjjdÞ ¼∑K

k ¼ 1PðwjjzkÞPðzkjdÞ
¼∑K

k ¼ 1θdkβkj. Learning PLSA is to learn the topics β¼ ðβ1;…;βK Þ.
Inference of document d is to find θd ¼ ðθd1;…;θdK Þ.

For learning, we use the EM algorithm to maximize the like-
lihood of the training data:

E�step : Pðzkjd;wjÞ ¼
PðwjjzkÞPðzkjdÞ

∑K
l ¼ 1PðwjjzlÞPðzljdÞ

; ð1Þ

M�step : θdk ¼ PðzkjdÞp ∑
V

v ¼ 1
dvPðzkjd;wvÞ; ð2Þ

βkj ¼ PðwjjzkÞp ∑
dAD

djPðzkjd;wjÞ: ð3Þ

Inference in PLSA is not explicitly derived. Hoffman [11]
proposed an adaptation from learning: keeping topics fixed,
iteratively do the steps (1) and (2) until convergence. This algo-
rithm is called folding-in.

2.1.2. LDA
Blei et al. [18] proposed LDA as a Bayesian version of PLSA.

In LDA, the topic proportions are assumed to follow a Dirichlet
distribution. The same assumption is endowed over topics β.
Learning and inference in LDA are much more involved than those
of PLSA. Each document d is independently inferred by the
variational method with the following updates:

ϕdjkpβkwj
exp Ψ ðγdkÞ; ð4Þ

γdk ¼ αþ ∑
dj 40

ϕdjk; ð5Þ

where ϕdjk is the probability that topic i generates the jth word wj

of d; γd is the variational parameters; Ψ is the digamma function;
α is the parameter of the Dirichlet prior over θd.

Learning LDA is done by iterating the following two steps until
convergence. The E-step does inference for each document. The
M-step maximizes the likelihood of data w.r.t. β by the following

2 Note that due to being dimension reduction methods, PLSA, LDA, FSTM,
PLSAc, LDAc, and FSTMc themselves cannot directly do classification. Hence we use
SVM with a linear kernel for doing classification tasks on the low-dimensional
spaces. Performance for comparison is the accuracy of classification.
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