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a b s t r a c t

To find hidden structures of a data set, it is important to understand the relationship between variables
such as genes or neurons. As a measure of such relationship, causality is to find directed relations
between the variables, which can reveal more of the structures than undirected relations. As a
quantitative measure of such causal relationship, transfer entropy has been proposed and successfully
applied to capture the amount of information flow between events and sequences. In order to analyze
the flow locally in time, we propose to localize normalized transfer entropy and regularize it to avoid the
unstable result. Experiment results with synthetic and real-world data confirm the usefulness of our
algorithm.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In data analysis, it is important to understand the relationship
among variables, events and sequences. Once we measure rela-
tionships between the variables, we can represent the data set on
a metric space [1–4] or build up a model for inference on them [5].
Such relationship can be obtained by symmetric measurements
like correlation and distance, or asymmetric ones like transition
probability and causality.

Causality is a kind of asymmetric (or directional) relationship
between two variables. Although real causality is not possible to
find, there are some methods to measure quantitative amounts of
causality-like properties. Granger causality test is one of the
popular methods to measure such amounts [6], which is based
on a linear regression method. To measure the casual relation
which cannot be captured by the covariance, transfer entropy (TE)
(also known as directed transinformation [7], and directed infor-
mation [15]) was proposed several decades ago and recently
started to draw much attention [7,8]. Transfer entropy has been
applied to many research areas like neuroscience and cognitive
science [9,10], where it measures how much information flows
between variables over the whole time series. Transfer entropy
was normalized by the total information of the variable after
removing the bias effect, which leads to normalized transfer
entropy (NTE) [11].

NTE does not measure the flow locally in time, while localized
information flow could be more helpful in understanding the
relationship. For example, after finding out that neuron A affects

neuron B over the whole time, it can be more informative to figure
when and how much A affects B. Recently several localized versions
of transfer entropy have been proposed [12–14], but normalized
transfer entropy has not been localized. So, in this paper, we localize
NTE after removing the bias effect as the previous NTE does, which
leads to local NTE. The rationale for the need of localization of NTE
over TE is that NTE can make the transfer information comparable
in different environments or between different pairs of variables
without bias effects, while TE cannot. More discussions about
normalization can be found in [11].

Another issue in transfer entropy is that when data set is not
dense enough, there is a sampling problem as pointed out by [9],
since the entropies are calculated based on the probabilities. That
is, when the data samples are sparse in the data space, the
probability density estimation is too much biased to a few
samples. To overcome this sparseness problem, a priori distribu-
tion can be used [9]. In this paper, we propose to regularize the
local NTE based on Dirichlet distribution as a prior distribution for
the probabilities, which leads to regularized local NTE.

The rest of this paper is organized as follows. First, we briefly
review some previous works including transfer entropy and its
localized version in Section 2. Then in Section 3, we define local
NTE and regularize it to avoid sparseness problem. Experiment
results with synthetic and real-world data sets show how our
algorithm works in Section 4, followed by conclusion in Section 5.

2. Previous works

Transfer entropy (TE) was proposed decades ago by Marko [7],
and recently started to draw much attention since Schreiber's
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work [8]. It has been successfully applied to understand howmuch
information flows between variables (or channels) in many
research areas [15,11,10]. In this section, we briefly review some
previous works including all the steps in transfer entropy and its
localized version.

2.1. Symbolization and probability mass function

When the variables in the data set are continuous variables, to
make the problem simple, symbolization of the variables can be
applied so that the data can be considered as a set of discrete
sequences. As in the SAX algorithm [16], we use the distribution of
the piecewise aggregate approximates (PAAs) and make a uni-
formly distributed symbol set based on the histogram of the PAAs.
If the data set is given in discrete sequences, symbolization is not
necessary.

Let A¼ fa1; a2;…; aKg be a set of the symbols of the two discrete
variables along the time t ¼ 1;…;N : x¼ ½x1; x2;…; xN� and y¼
½y1; y2;…; yN�, and xtAA and ytAA. p(x) be the probability mass
function of x. Basically, the probability functions are obtained by
frequency of the symbols, that is, pðxÞ ¼ nx=N, where nx is the
number of times that symbol x happens in the sequence.

2.2. Transfer entropy

There are several entropy measures related to TE [7]. Shannon
entropy of x and conditional entropy (or entropy rate) of x given xp

are, respectively, defined by

HðxÞ ¼ � ∑
xAA

pðxÞ log pðxÞ; ð1Þ

HðxjxpÞ ¼ � ∑
x;xp AA

pðx; xpÞ log pðxjxpÞ; ð2Þ

where xp is the past values of x. Conditional entropy means the
total information of current x knowing the previous values. Free
information of x is given by xp and yp, Hðxjxp; ypÞ is defined in a
similar way and it means the information of current x is indepen-
dent of y:

Hðxjxp; ypÞ ¼ � ∑
x;xp ;yp AA

pðx; xp; ypÞ log pðxjxp; ypÞ: ð3Þ

Transfer entropy from y to x is given by

TEðy; xÞ ¼HðxjxpÞ�Hðxjxp; ypÞ; ð4Þ
which means the information of current x is coming from y but
not from the previous values of x itself.

2.3. Normalized transfer entropy

Transfer entropy might include another kind of information
from y to x that is not what we want to count [17]. For example,
the future of y can incidentally give some amount of information
to x, especially when the data samples are sparse. To remove such
inevitable information from y to x in the transfer entropy, we need
to keep the distribution of y as independent of x as possible over
the whole sequence. If y is independent of x, Hðxjxp; ypÞ ¼HðxjxpÞ
which makes TEðy; xÞ ¼ 0. That is, even after shuffling (or reorder-
ing randomly) y, if TEðys; xÞ40, where ys is the shuffled sequence
of y, that is not the information we want to measure. So we
remove that from the real TEðy; xÞ as in [17]. Instead of shuffling,
we can shift y assuming that if a signal is shifted enough, there is
no mutual information between two signals.

Finally, normalized transfer entropy (NTE) from y to x [11] is
given by

NTEðy; xÞ ¼ TEðy; xÞ�TEðys; xÞ
HðxjxpÞ ; ð5Þ

where TEðys; xÞ is a bias term with a shuffled (or shifted) sequence
of y. That is, the bias term indicates the amount of information
flowing even when the sequence is shuffled. NTE represents the
ratio of information in the current x transferring from y to the total
information of x after removing the bias effect. The rationale for
the need of the bias term and normalization was discussed in [11].
As briefly described, NTE makes comparison between transfer
entropies possible.

2.4. Local transfer entropy

Given two sequences of symbols, TE or NTE gives us just one
value which indicates how much information is flowing between
the two sequences over the whole time. To understand the
information locally in space or time, local transfer entropy can
be used [12,13]. Local TE is almost the same as Eq. (4), except not
taking the expectation. The local entropies at time tA ½1;N� are
defined as follows.

Local entropy, also known as surprise or information, of x at a
specific time t is defined by

HtðxÞ ¼ � log pðxtÞ; ð6Þ
where ∑tHtðxÞ ¼HðxÞ in Eq. (1). That is, HtðxÞ indicates the
contribution to the entropy HðxÞ at a specific time t. The condi-
tional entropy is localized in the same way as follows:

HtðxjxpÞ ¼ � log pðxt jxt�1Þ; ð7Þ
where the range of t is ½2;N�. Here, we consider just the order
1 Markov process to reduce the computation complexity so that xp

is replaced by xt�1. Also, free information of x is localized by

Htðxjxp; ypÞ ¼ � log pðxt jxt�1; yt�1Þ: ð8Þ
Finally, local transfer entropy from y to x [12] is defined by

TEtðy; xÞ ¼HtðxjxpÞ�Htðxjxp; ypÞ; ð9Þ
and ∑tTEtðy; xÞ ¼ TEðy; xÞ, where TEtðy; xÞ indicates the contribu-
tion to the transfer entropy TEðy; xÞ at a specific time t.

3. Proposed algorithm

3.1. Localization of normalized transfer entropy

Although NTE is more appropriate than TE to compare many
pairs, there is no localized version of NTE. So, in light of localizing
TE, we localize NTE, which leads to local NTE, as follows:

NTEtðy; xÞ ¼
TEtðy; xÞ� 1

N�1
∑tTEtðys; xÞ

∑tHtðxjxpÞ
; ð10Þ

where

∑
t
TEtðys; xÞ ¼ TEðys; xÞ;

∑
t
HtðxjxpÞ ¼HðxjxpÞ:

To make the shuffled effect consistent over the whole time series,
we take the average of TEtðys; xÞ over the whole time which is
TEðys; xÞ=ðN�1Þ, and we normalize the equation by ∑tHtðxjxpÞ to
make sure that ∑tNTEtðy; xÞ ¼NTEðy; xÞ as follows:

∑
t
NTEtðy; xÞ ¼

∑tTEtðy; xÞ�∑t
1

N�1
TEðys; xÞ

HðxjxpÞ

¼ TEðy; xÞ�TEðys; xÞ
HðxjxpÞ

¼NTEðy;xÞ:
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