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a b s t r a c t

The purpose of this paper is to investigate the delay-dependent synchronization analysis for coupled

discrete-time neural networks with interval time-varying delays in network couplings. Based on

Lyapunov method, a new delay-dependent criterion for the synchronization of the networks is derived

in terms of linear matrix inequalities (LMIs) by construction of a suitable Lyapunov–Krasovskii’s

functional and utilization of Finsler’s lemma without free-weighting matrices. Two numerical examples

are given to illustrate the effectiveness of the proposed method.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Complex networks, which are a set of interconnected nodes
with specific dynamics, have received increasing attention of
researches from various fields of science and engineering such
as the World Wide Web, social networks, electrical power grids,
global economic markets, and so on. Many mathematical models
were proposed to describe various complex networks [1,2]. Also,
in the real applications of systems, there exists naturally time-
delay due to the finite information processing speed and the finite
switching speed of amplifiers. It is well known that time-delay
often causes undesirable dynamic behaviors such as performance
degradation, and instability of the systems. Therefore, recently,
the problem of synchronization of coupled neural networks with
time-delay which is one of hot research fields of complex net-
works has been a challenging issue due to its potential applica-
tions such as information science, biological systems and so on
[3–5]. By use of Lyapunov functional method and Kronecker
product properties, global synchronization for an array of delayed
neural networks with hybrid coupling were proposed in [3]. In
[4], the synchronization criteria were derived for a general array

model of coupled delayed neural networks with hybrid coupling.
Li et al. [5] presented two novel synchronization criteria for arrays
of coupled delayed neural networks with both delayed coupling
and one single delayed one. Moreover, the delayed neural net-
works also were addressed in [6–8].

On the other hand, these days, most systems use digital
computers (usually microprocessor or microcontrollers) with
the necessary input/output hardware to implement the systems.
The fundamental character of the digital computer is that it takes
compute answers at discrete steps. Therefore, discrete-time
modeling with time-delay plays an important role in many fields
of science and engineering applications [9–11]. In this regard,
various approaches to synchronization stability criterion for
coupled discrete-time neural networks with time-delay have
been investigated in the literature [12–14]. Wang and Song [12]
studied the problem of synchronization for an array of coupled
stochastic discrete-time neural networks with mixed delays
(discrete and distributed time-varying delays). In [13], by use of
the novel Lyapunov–Krasovskii’s functional and Kronecker pro-
duct, synchronization and estimation conditions for discrete-time
complex networks with distributed delays was presented. How-
ever, time-delay in only nodes was considered in [12,13]. More-
over, Yue and Li [14] derived the synchronization stability criteria
for continuous/discrete complex dynamical networks with inter-
val time-varying delays based on a piecewise analysis method
and the convexity of matrix inequalities. In [14], the
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synchronization problem of the discrete-time complex networks
is transferred equally into the asymptotical stability problem of a
group of uncorrelated delay functional difference equations. To
derive the delay functional difference equations, an eigenvalue of
outer-coupling matrix and a Jacobian at a solution of an isolated
node of the complex dynamical networks are used. However,
when we utilize Kronecker product properties, the transforma-
tions of complex networks are simple and can derive directly
from the corresponding networks. Unfortunately, to the best of
authors’ knowledge, delay-dependent synchronization analysis of
coupled discrete-time neural networks with time-varying delay in
network couplings has not been investigated yet. It should be
pointed out that delay-dependent analysis has been paid more
attention than delay-independent one because the sufficient
conditions for delay-dependent analysis make use of the informa-
tion on the size of time-delay [15]. That is, the former is generally
less conservative than the latter.

Motivated by the above discussions, the problem of new delay-
dependent synchronization criterion for coupled discrete-time neural
networks with interval time-varying delays in network couplings is
considered. The coupled discrete-time neural networks are repre-
sented as a simple mathematical model by use of Kronecker product
technique. Then, by construction of a suitable Lyapunov–Krasovskii’s
functional and utilization of Finsler’s lemma, a new synchronization
criterion is derived in terms of LMIs which can be solved efficiently by
standard convex optimization algorithms [16]. In order to utilize
Finsler’s lemma as a tool of getting less conservative synchronization
criterion, it should be noted that a new zero equality from the
constructed mathematical model is devised. The concept of scaling
transformation matrix will be utilized in deriving zero equality of the
method. Finally, two numerical examples are included to show the
effectiveness of the proposed method.

Notation: Rn is the n-dimensional Euclidean space, and Rm�n

denotes the set of m�n real matrix. For symmetric matrices X

and Y, X4Y (respectively, XZY) means that the matrix X�Y is
positive definite (respectively, nonnegative). X? denotes a basis
for the null-space of X. In, 0n and 0m�n denotes n�n identity
matrix, n�n and m� n zero matrices, respectively. J � J refers to
the Euclidean vector norm or the induced matrix norm. diagf� � �g

denotes the block diagonal matrix. % represents the elements
below the main diagonal of a symmetric matrix.

2. Problem statements

Consider the following discrete-time neural networks with
interval time-varying delays:

yðkþ1Þ ¼ AyðkÞþW1gðyðkÞÞþW2gðyðk�hðkÞÞÞþb, ð1Þ

where n denotes the number of neurons in a neural network, yð�Þ ¼

½y1ð�Þ, . . . ,ynð�Þ�
T ARn is the neuron state vector, gð�Þ ¼ ½g1ð�Þ,

. . . ,gnð�Þ�
T ARn denotes the neuron activation function vector,

b¼ ½b1, . . . ,bn�
T ARn means a constant external input vector,

A¼ diagfa1, . . . ,angARn�n
ð0oaqo1,q¼ 1, . . . ,nÞ is the state feed-

back matrix, WqARn�n
ðq¼ 1,2Þ are the connection weight matrices,

and h(k) is interval time-varying delays satisfying

0ohmrhðkÞrhM ,

where hm and hM are positive integers.
In this paper, it is assumed that the activation functions satisfy

the following assumption:

Assumption 1. The neurons activation functions, gaðyað�ÞÞ

ða¼ 1, . . . ,nÞ, are assumed to be nondecreasing, bounded and

globally Lipschiz; that is

l�a r
gaðxaÞ�gaðxbÞ

xa�xb
r lþa , 8xa,xbAR, xaaxb,

where l�a and lþa are constant values.

For simplicity, in stability analysis of the network (1), the
equilibrium point yn ¼ ½yn

1, . . . ,yn
n�

T is shifted to the origin by
utilization of the transformation xð�Þ ¼ yð�Þ�yn, which leads the
network (1) to the following form:

xðkþ1Þ ¼ AxðkÞþW1f ðxðkÞÞþW2f ðxðk�hðkÞÞÞ,

where xð�Þ ¼ ½x1ð�Þ, . . . ,xnð�Þ�
T ARn is the state vector of the trans-

formed network, and f ðxð�ÞÞ ¼ ½f 1ðx1ð�ÞÞ, . . . ,f nðxnð�ÞÞ�
T is the trans-

formed neuron activation function vector with f bðxbð�ÞÞ ¼

gbðxbð�Þþyn

bÞ�gbðy
n

bÞðb¼ 1, . . . ,nÞ satisfies, from Assumption 1,
l�b r f bðxbÞ=xbr lþb ,8xba0, which is equivalent to

½f bðxbðkÞÞ�l�b xbðkÞ�½f bðxbðkÞÞ�lþb xbðkÞ�r0: ð2Þ

In this paper, a model of coupled discrete-time neural net-
works with interval time-varying delays in network couplings is
considered as

xiðkþ1Þ ¼ AxiðkÞþW1f ðxiðkÞÞþW2f ðxiðk�hðkÞÞÞþ
XN

j ¼ 1

gijGxjðk�hðkÞÞ,

i¼ 1,2, . . . ,N, ð3Þ

where N is the number of couple nodes, xiðkÞ ¼ ½xi1ðkÞ,
. . . ,xinðkÞ�

T ARn is the state vector of the ith node, GARn�n is the
constant inner-coupling matrix of nodes, which describe the
individual coupling between networks, G¼ ½gij�N�N is the outer-
coupling matrix representing the coupling strength and the
topological structure of the networks satisfies the diffusive
coupling connections:

gij ¼ gjiZ0 ðia jÞ, gii ¼�
XN

j ¼ 1,ia j

gij ði,j¼ 1,2, . . . ,NÞ:

For the convenience of stability analysis for the network (3), the
following Kronecker product and its properties are used.

Lemma 1 (Kronecker product, Graham [17]). Let � denotes the

notation of Kronecker product. Then, the following properties of

Kronecker product are easily established:

(i) ðaAÞ � B¼ A� ðaBÞ,
(ii) ðAþBÞ � C ¼ A� CþB� C,

(iii) ðA� BÞðC � DÞ ¼ ðACÞ � ðBDÞ.

Let us define

xðkÞ ¼ ½x1ðkÞ, . . . ,xNðkÞ�
T ,fðxðkÞÞ ¼ ½f ðx1ðkÞÞ, . . . ,f ðxNðkÞÞ�

T :

Then, with Kronecker product in Lemma 1, the network (3) can be
represented as

xðkþ1Þ ¼ IN � ðAxðkÞþW1fðxðkÞÞþW2fðxðk�hðkÞÞÞÞ

þðG�GÞxðk�hðkÞÞ: ð4Þ

The aim of this paper is to investigate the delay-dependent
synchronization stability analysis of the network (4) with interval
time-varying delays in network coupling. In order to do this, the
following definition and lemmas are needed.

Definition 1 (Liu and Chen [18]). The network (3) is said to be
asymptotically synchronized if the following condition holds:

lim
t-1

JxiðkÞ�xjðkÞJ¼ 0, i,j¼ 1,2, . . . ,N:

Lemma 2 (Cao et al. [3]). Let U ¼ ½uij�N�N , PARn�n, xT ¼

½x1,x2, . . . ,xn�
T , and yT ¼ ½y1,y2, . . . ,yn�

T . If U ¼UT and each row
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