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a b s t r a c t

In this paper, we address the graph-based linear manifold learning method for object recognition. The

proposed method is called enhanced Locality Preserving Projections. The main contribution is a

parameterless computation of the affinity matrix that draws on the notion of meaningful and adaptive

neighbors. It integrates two interesting properties: (i) being entirely parameter-free and (ii) the

mapped data are uncorrelated. The proposed method has been integrated in the framework of three

graph-based embedding techniques: Locality Preserving Projections (LPP), Orthogonal Locality Preser-

ving Projections (OLPP), and supervised LPP (SLPP). Recognition tasks on six public face databases show

an improvement over the results of LPP, OLPP, and SLPP. The proposed approach could also be applied

to other category of objects.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In most computer vision and pattern recognition problems, the
large number of sensory inputs, such as images and videos, are
computationally challenging to analyze. In such cases it is desir-
able to reduce the dimensionality of the data while preserving the
original information in the data distribution, allowing for more
efficient learning and inference. If the variance of the multivariate
data is faithfully represented as a set of parameters, the data can
be considered as a set of geometrically related points lying on a
smooth low-dimensional manifold. The fundamental issue in dimen-
sionality reduction is how to model the geometry structure of the
manifold and produce a faithful embedding for data projection.
During the last few years, a large number of approaches have been
proposed for computing the embedding. We categorize these meth-
ods by their linearity. The linear methods, such as principal compo-
nent analysis (PCA) [14], multidimensional scaling (MDS) [2], are
evidently effective in observing the Euclidean structure. Unlike PCA
which is unsupervised, linear discriminant analysis (LDA) [4] is a
supervised technique. One limitation of PCA and LDA is that they
effectively see only the linear global Euclidean structure. However,

some recent research shows that the samples may reside on a
nonlinear submanifold, which makes PCA and LDA inefficient.

The nonlinear methods such as locally linear embedding (LLE)
[10], Laplacian eigenmaps [1] focus on preserving the local struc-
tures. Isomap [13] attempts to preserve the geodesic distances on
the manifold. Principal component analysis (PCA) projects the
samples along the directions of maximal variances and aims to
preserve the Euclidean distances between the samples. There is
considerable interest in geometrically motivated approaches to
visual analysis. Various researchers (see [10,13,12]) have considered
the case when the data lives on or close to a low dimensional
submanifold of the high dimensional ambient space. One hopes then
to estimate geometrical and topological properties of the submani-
fold from random points lying on this unknown submanifold.
Maximum variance unfolding (MVU) [15] is a global algorithm for
nonlinear dimensionality reduction, in which all the data pairs,
nearby and far, are considered. MVU attempts to unfold a data set by
pulling the input patterns as far apart as possible subject to the
constraints that distances and angles between neighboring points
are strictly preserved.

Linear dimensionality reduction (LDR) techniques have been
increasingly important in pattern recognition [9,17] since they
permit a relatively simple mapping of data onto a lower-dimen-
sional subspace, leading to simple and computationally efficient
classification strategies. The main advantage of the linear meth-
ods over the non-linear ones is that the embedding function of the
linear techniques is defined everywhere in the input space, while
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for non-linear embedding techniques, it is only defined for a set of
data samples. Many linear dimensionality reduction techniques
can be derived from a graph whose nodes represent the data
samples and whose edges quantify the similarity among pairs
of samples [11]. Recently, a graph-based method was proposed
for linear dimensionality reduction (LDR). It is based on Locality
Preserving Projections (LPP) [5,8,18]. LPP is a typical linear graph-
based dimensionality reduction (DR) method that has been success-
fully applied in many practical problems such as face recognition.
LPP is essentially a linearized version of Laplacian Eigenmaps [1]. The
main applications of LPP are data visualization, data dimensionality
reduction, and object recognition. When dealing with face recogni-
tion problems, LPP is preceded by a principal component analysis
(PCA) step in order to avoid possible singularities.

In the literature, many extensions have been proposed. In [16],
schemes have been introduced to improve the original LPP by
(i) introducing linear transforms before performing the LPP and
(ii) changing the quotient criterion to a difference criterion. While
LPP is a linear unsupervised technique, it preserves the locality
structures of data better than PCA. Furthermore, it is shown that in
some cases it can give better results than the supervised technique
LDA [6]. Orthogonal LPP (OLPP) [3] was recently proposed as an
extension of LPP. OLPP provides orthogonal projection directions
using the LPP criterion. Ref. [8] is to solve the singularity of the matrix
XDXT of LPP.

Although the LPP framework can effectively preserve the mani-
fold structure of the input data, its discriminability between different
classes is little because the label information is neglected during the
estimation of the linear transform. Therefore, a supervised LPP (SLPP)
is proposed to overcome this limitation [19]. In SLPP, the affinity
matrix A is computed with the constraint that each point’s K nearest
neighbors must be chosen from the samples with the same class
label as its.

In this paper, we propose a novel LPP that integrates two
interesting properties: (i) being entirely parameter-free and
(ii) the mapped data are uncorrelated. The paper is organized as
follows. Section 1 summarizes the linear mapping of Locality
Preserving Projections (LPP). Section 2 describes the proposed
parameterless and enhanced LPP. Section 3 presents experimental
results for face recognition using five face databases.

2. Locality Preserving Projections

We assume that we have a set of N samples fxig
N
i ¼ 1 �RD.

Define a neighborhood graph on these data, such as a K-nearest-
neighbor or E-ball graph, or a full mesh, and weigh each edge
xi � xj by a symmetric affinity function Aij ¼ Kðxi;xjÞ, typically
Gaussian, i.e.,

Aij ¼ exp �
Jxi�xjJ

2

b

 !

where b is usually set to the average of squared distances
between all pairs. Let A denotes the symmetric affinity matrix
whose elements are defined by Aij.

We seek latent points fyig
N
i ¼ 1 �RL that minimize 1

2

P
i,jJyi�yjJ

2

Aij, which discourages placing far apart latent points that corre-
spond to similar observed points. For the purpose of presentation
simplicity, we present the one dimensional mapping case in
which the original data set fxig

N
i ¼ 1 is mapped to a line.

Let z¼ ðy1,y2, . . . ,yNÞ
T be such a map (a column vector). Note

that here every data sample is mapped to a real value. A reason-
able criterion for choosing a ‘‘good’’ map is to optimize the following

objective function under some constraints:

min 1
2

X
i,j

ðyi�yjÞ
2Aij ð1Þ

Minimizing function (1) imposes a heavy penalty if neighboring
points xi and xj are mapped far apart. By simple algebra formulation,
function (1) can be written as

1
2

X
i,j

ðyi�yjÞ
2Aij ¼ zT Dz�zT Az¼ zT Lz ð2Þ

where D is the diagonal weight matrix, whose entries are column
(or row, since A is symmetric) sums of A, and L¼D�A is the
Laplacian matrix.

In the LPP formulation, the latent data are simply given by a
linear mapping of the original data. Thus, the one dimensional
map z (column vector) is giving by

z¼XT w ð3Þ

where X¼ ðx1,x2, . . . ,xNÞ is the data matrix, and w is a projection
direction. Finally, by combining (3) and (2) and by imposing the
constraint zT Dz¼ 1 for setting an arbitrary scale, the minimiza-
tion problem reduces to the finding:

min
w

wT XLXT w s:t: wT XDXT w¼ 1 ð4Þ

The transformation vector w that minimizes the objective func-
tion is given by the minimum eigenvalue solution to the general-
ized eigenvalue problem:

XLXT w¼ lXDXT w ð5Þ

For a multidimensional mapping, each data sample xi is mapped
into a vector yi. The aim is to compute the projection directions
ðW¼ ðw1,w2, . . . ,wLÞÞ. These vectors are given by the generalized
eigenvectors of (5), ordered according to their eigenvalues, 0rl1

rl2r � � �rlL. Then, the mapping of x is given by y¼WT x.
In many real world problems such as face recognition, the

dimensionality of the sample, D, is usually larger than the number
of the samples, N, and the generalized eigen-equation cannot be
directly solved due to the matrix singularity problem. In such
cases both matrices XDXT and XLXT are singular. This problem is
also referred to as the Small Sample Size (SSS) problem.

To overcome the complication of singular matrices, original
data are first projected to a PCA subspace or a random orthogonal
space so that the resulting matrix XDXT is non-singular. The
global transform is given by W¼WPCAWLPP or W¼WrandWLPP

where Wrand is an orthogonal random matrix with enough columns.
The use of random projection has been proved to give equivalent
performance to PCA yet with the obvious advantage that the corres-
ponding transform does not need a training set.

Shortcomings of LPP: The classical LPP has two shortcomings.
The first shortcoming concerns the selection of parameters.
Indeed, the computation of the affinity matrix A needs the setting
of two parameters: (i) the width of the Gaussian Kernel and (ii)
the size of neighborhood for non-full mesh graphs. In practice, the
width parameter, b, is set to the average of pairwise distances
over the training set. However, this heuristic does not necessarily
provide the optimal width value for a given data set. On the other
hand, the neighborhood size has an impact on the learning of the
manifold, and was usually set in advance to the same value for all
samples. The second shortcoming concerns the eigenvectors that
are solved from the generalized eigenvalue problem of (5), these
ones are generally statistically correlated and contain some redun-
dancy information.
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