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a b s t r a c t

This paper adopts and adapts Kohonen’s standard self-organizing map (SOM) for exploratory temporal

structure analysis. The self-organizing time map (SOTM) implements SOM-type learning to one-

dimensional arrays for individual time units, preserves the orientation with short-term memory and

arranges the arrays in an ascending order of time. The two-dimensional representation of the SOTM

attempts thus twofold topology preservation, where the horizontal direction preserves time topology

and the vertical direction data topology. This enables discovering the occurrence and exploring the

properties of temporal structural changes in data. For representing qualities and properties of SOTMs,

we adapt measures and visualizations from the standard SOM paradigm, as well as introduce a measure

of temporal structural changes. The functioning of the SOTM, and its visualizations and quality and

property measures, are illustrated on artificial toy data. The usefulness of the SOTM in a real-world

setting is shown on poverty, welfare and development indicators.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

During an era of increasing access to complex datasets,
abstraction of multivariate temporal patterns is a central issue.
However, exploring and extracting patterns in high-dimensional
panel data, i.e., along multivariate, temporal and cross-sectional
dimensions, is a demanding task. While exploratory data analysis
commonly concerns either individual univariate and multivariate
time-series or static cross-sectional analysis, a question of central
importance is how to combine these tasks. That is, how to identify
the occurrence and explore the properties of temporal structural
changes in data, as well as their specific locations in the cross
section. This type of exploratory data analysis will in the sequel
be referred to as exploratory temporal structure analysis.

Kohonen’s [1,2] self-organizing map (SOM) is an effective
general-purpose tool for abstraction of multivariate mean profiles
through projection into a lower dimension. The SOM differs from
standard methods for exploratory data analysis by at the same
time performing a clustering via vector quantization and projec-
tion via neighborhood preservation, as well as by possessing the
advantages of a regular grid shape for linking visualizations and a
simple and fast learning algorithm. While exploratory analysis
with the SOM mainly concerns cross-sectional applications, it is a
common tool for classification, clustering and prediction of time-
dependent data in a wide range of domains, such as engineering,
geographical and environmental sciences, economics and finance

(see e.g., [2–4]). The main rationale for using the SOM over more
traditional methods for time-series prediction is the inherent
local modeling property and topology preservation of units that
enhances interpretability of dynamics as well as the availability of
growing architectures that facilitate the choice of parsimony (for
a thorough review see [5]).

For exploratory analysis on multivariate panel data, however,
it is critical to visualize, or present an abstraction across, all
dimensions (i.e., multivariate, temporal and cross-sectional
spaces). Using a standard two-dimensional SOM for exploratory
temporal structure analysis, processing of the time dimension has
thus far been proposed along two suboptimal directions: comput-
ing separate maps per time unit (e.g., [6–8]) or one map on pooled
panel data (e.g., [9–11]). Owing to a possibly high number of time
units and temporal differences in correlations and distributions,
comparing separate maps per time unit is a laborious task while
their structure may not in the least even be comparable. However,
SOMs trained with pooled data, for which time can be inferred as
a type of latent dimension that is definable but unordered, fail in
describing the structure in each cross section. The literature has
provided several improvements to the SOM paradigm for tem-
poral processing. We reduce these into four groups: (1) those
implicitly introducing time in pre- or post-processing (e.g.,
trajectories [12]), (2) adaptations of the standard activation and
learning rule (e.g., the Hypermap [13]), (3) adaptations of the
standard network topology through feedback connections and
hierarchical layers (e.g., Temporal SOM [14]) and (4) combinations
with other visualization techniques (e.g., interactive spatiotem-
poral visualization systems [15,16]). Yet, the problem of visualiz-
ing changes in inherent data structures over time has not been
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entirely addressed. The existing SOM literature has thus short-
comings in disentangling the temporal dimensions and cross-
sectional structures for exploratory temporal structure analysis,
which is the main focus of this paper.

In this paper, we propose a self-organizing time map (SOTM)
for abstraction of the structure in temporal multivariate patterns.
In general, the processing of the SOTM is depicted by standard
SOM-type learning to one-dimensional arrays for individual time
units. We attempt to preserve a stable orientation of the SOTM
over time with an initialization based upon short-term memory.
When arranging the one-dimensional arrays in an ascending
order of time, the SOTM enables a two-dimensional representa-
tion with multivariate data structures on the vertical direction
and the temporal dimension on the horizontal direction. This
output can, when combined with visual aids, be used for dynamic
visual cluster analysis, where local distances between SOTM units
can be treated as cluster structure information across both
directions (i.e., identification of changing, emerging and lost
clusters). An ordered SOTM can also be used for projecting
individual or grouped data onto the map (constrained by the
units of its own time unit). The projections, in conjunction with
the structure of the SOTM, enable a temporal version of Bertin’s
[17] three ‘‘levels of reading’’: elementary level (a view of single
multivariate time series), intermediate level (a view of groups of
multivariate time series) and global level (a view of temporal
multivariate data structures).

For measuring qualities and properties of SOTMs, we adapt
several measures and visualizations from the standard SOM
paradigm. We also propose a measure for indicating the degree
of temporal structural changes in data. A limitation of this work is
the absence of a quantitative evaluation, such as commonly
performed prediction comparisons to alternative methods. This
is, however, due to the lack of a comparable evaluation function.
Instead, we illustrate the functioning, output and usefulness of
the SOTM on an artificial toy dataset with expected patterns. The
generated toy data exhibit multivariate clustered patterns along
cross-sectional and temporal dimensions. In addition, we also
illustrate drawbacks of a naı̈ve SOM model on these data and
provide a guide for interpreting patterns on the SOTM. We also
illustrate a real-world application of the SOTM on a temporal
multivariate dataset of development and welfare indicators with
patterns over the past two decades. The indicators illustrate the
progress in fulfilling the Millennium Development Goals (MDGs)-
eight goals representing commitments to reduce poverty and
hunger and to tackle ill-health, gender inequality, environmental
degradation as well as lack of education and access to clean water.

The paper is structured as follows. Section 2 gives an overview
of related literature concerning temporal processing with the
SOM and attempts to reduce it into four groups. In Section 3, the
functioning, visualization and quality and property measures of
the SOTM are described. Section 4 illustrates the usefulness of the
SOTM, its visualizations and its quality and property measures, as
well as a guide for interpreting them, on two datasets: artificial
toy data and indicators of the progress towards the MDGs. Section
5 concludes by presenting our key findings and directions for
future research.

2. Related work

There is a wide range of literature adapting and extending the
standard SOM for temporal processing. While the literature on
time in SOMs has been thoroughly reviewed in [6,18–21], a
unanimous classification dividing it into distinct groups of studies
is far from clear-cut. Drawing upon the above reviews, we
attempt to reduce the literature related to the SOTM into four

groups of works: those with an implicit consideration of time,
those adapting the learning or activation rule, those adapting the
topology, and those combining SOMs with other visualization
techniques.

The first group applies the standard Kohonen SOM algorithm
and illustrates the temporal dimension either as a pre- or post-
processing step. The pre-processing concerns embedding a time
series into one input vector, such as tapped delay (e.g., [22]). A
time-related visualization through post-processing is, however,
more common. A connected time series of best-matching units
(BMUs), i.e., a trajectory, has been used in the literature to
illustrate temporal transitions (e.g., [12,23]). By exploiting the
topological ordering of the SOM, visualization of the current and
past states enables visual tracking of the process dynamics. In
[24,25], the trajectory approach has been extended to show
membership degrees of each time-series point to each cluster.
However, while temporal patterns require large datasets for
generalization and significance, trajectories can only be visualized
for a limited set of data. Thus, strengths and actual directions of
the patterns can be obtained by probabilistic modeling of state
transitions on the SOM (see e.g., [26,27]).

The second group of works adapts the standard SOM activation
or learning rule. Those decomposing the learning rule of the
standard SOM into two parts, past and future, for time-series
prediction have their basis in the Hypermap [13]. The past part is
used for finding best-matching units (BMUs), while the entire
input vector is used within the updates of the reference vectors.
For predicting out-of-sample data, the past part is again used for
finding BMUs while the future part of that unit is the predicted
value. This type of learning has been used for standard time-series
prediction (see e.g., [28,29]) and predictions through non-linear
regression (see e.g., [10,11]). The latter type of decomposition can
still be divided into supervised and semi-supervised SOMs, where
the difference depends on whether [10] or not [11] the present
part is used for matching in training. Instead of considering the
context explicitly in SOM training, it can be treated as the
neighborhood of the previous BMU. Kangas [30], for instance,
constrains the choice of a BMU to the neighborhood of the
previous BMU and thus has a behavior that resembles the
functioning of SOMs with feedback in the next group.

The third group deals with adaptations of the standard SOM
network topology through feedback connections and hierarchical
layers. The feedback SOMs have their basis in the seminal
Temporal SOM (TSOM) [14] that performs leaky integration to
the outputs of the SOM. The recurrent SOM (RSOM) [31,32] differs
by moving the leaky integration from the output units to the
input vectors. A recent recurrent model is the Merge SOM
(MSOM) [33] whose context combines the current pattern with
the past by a merged form of the properties of the BMU. The
recursive SOM (RecSOM) [34] keeps information by considering
the previous activation of the SOM as part of the input to the next
time unit, while the feedback SOM (FSOM) [35] differs by
integrating an additional leaky loop onto itself. The SOM for
structured data (SOMSD) labels, on the other hand, directed
acyclic graphs to regular [36] and arbitrary [37] grid structures.
Finally, Hammer et al. [38] define a general formal framework and
show that a large number of SOMs with feedback can be
recovered as special cases of it. The hierarchical network archi-
tectures, on the other hand, use at each layer one or more SOMs
operating at different time scales. The next level in the hierarchy
can either use the lower level SOM as input vectors without any
processing, such as two-level clustering commonly does, or use
transformed input vectors by computing distances between units
or concatenating a time series to one input vector, for instance.
Kangas [22] introduced hierarchical network architectures to
SOMs, and shows that a hierarchical SOM without any additional
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