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a b s t r a c t

Sparse representation has received an increasing amount of interest in recent years. By representing the

testing image as a sparse linear combination of the training samples, sparse representation based

classification (SRC) has been successfully applied in face recognition. In SRC, the ‘1 minimization

instead of the ‘0 minimization is used to seek for the sparse solution for its computational convenience

and efficiency. However, ‘1 minimization does not always yield sufficiently sparse solution in many

practical applications. In this paper, we propose a novel SRC method, namely the ‘p (0opo1) sparse

representation based classification (‘p-SRC), to seek for the optimal sparse representation of a testing

image. In ‘p-SRC, the ‘p (0opo1) minimization is adopted as an alternative to ‘0 minimization, the

solution of which is sparser than that of ‘1 minimization used in traditional SRC. Furthermore, an

iterative algorithm is introduced to efficiently solve the ‘p minimization problem in this paper. The

extensive experimental results on publicly available face databases demonstrate the effectiveness of

‘p-SRC for robust face recognition.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Sparsity has been a guiding principle in neuroscience, infor-
mation theory and signal processing over the past few decades
[1–5]. Recently, sparse representation (or coding), which encodes
a natural image using only a small number of atoms parsimo-
niously chosen from an overcomplete dictionary, has been devel-
oped and employed in computer vision and pattern recognition
area with promising results [6–8]. The finding that the firing of
the neurons with respect to a given input image is typically highly
sparse if these neurons are viewed as an overcomplete dictionary
of base signal elements at each visual stage [1,2] provides a
physiological basis for sparse representation.

Face recognition (FR) is one of the most attracting and challen-
ging tasks in computer vision and pattern recognition owing to
its applications in military, commercial and public security [9].
Various methods, such as Eigenfaces [10], Fisherfaces [11] and
Laplacianfaces [12], have been proposed for FR. Recently, Wright
et al. [6] reviewed the application of sparse representation in
statistical signal processing community and proposed the sparse
representation based classification (SRC) for robust FR.

The basic idea of SRC is to represent a test sample as a linear
combination of all training samples, and classify the test sample
by evaluating which class of training samples could result in
the minimal reconstruction error with the associated coding

coefficients. The sparse nonzero coefficients are supposed to
concentrate on the training samples which are from the same
class as the test sample. Naturally, the sparsest solution can be
sought by solving the following optimization problem

min
x

JxJ0 subject to Ax¼ y ð1Þ

where y is a test sample, A is the coding dictionary with all
training samples, x is the coding coefficient vector of y over A, JdJ0

denotes the ‘0-norm, which counts the number of nonzero entries
in a vector. However, the ‘0 minimization, which is a combina-
torial optimization problem, is NP-hard and difficult even to
approximate [13]. Alternatively, the ‘1 minimization, which is a
convex problem and can be solved in polynomial time, is
employed in sparse representation. Accordingly, the optimization
problem of Eq. (1) can be reformulated as

min
x

JxJ1 subject to Ax¼ y ð2Þ

It has been revealed that the minimizations of ‘0-norm and
‘1-norm are equivalent if the solution is sufficiently sparse
[4,14–15].

The use of ‘1-norm regularization in SRC is remarkably wide-
spread; however, whether it is good enough to essentially
characterize the signal is still an open issue. More recently, many
works have been done to address this issue. By incorporating the
nonnegative constraint into the sparse coefficient, Liu et al. [16]
proposed a novel sparse nonnegative image representation
method. Zheng et al. [17] introduced a graph Laplacian regularizer
into the traditional sparse representation objective function
to capture the intrinsic geometrical information of the data.
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Zeng et al. [18] proposed a novel kernelized classification frame-
work based on sparse representation, which is performed in inner
product space rather than Euclidean space.

The previously mentioned methods develop the sparse repre-
sentation from different perspectives. However, to the best of our
knowledge, little work has been done to enhance the sparsity of
coding coefficients in sparse representation [21–22]. Based on the
sparse assumption, the ‘1 minimization is used instead of the ‘0

minimization in SRC [6], but the solutions of the ‘1 minimization
are often less sparse than those of the ‘0 minimization in many
practical applications [24]. Furthermore, the sparser the coding
coefficients are, the easier will it be to accurately determine the
identity of the test sample [6]. This raises the question of whether
we can find a different alternative to ‘0 minimization which not
only find a sparser solution than ‘1 minimization but also be
easier to be solved than ‘0 minimization.

Recently, ‘p-norm, where 0opo1 (in which case JdJp is not
actually a norm, though JdJp

p satisfies the triangle inequality and
induces a metric), has been proposed as a natural replacement of
‘1-norm for sparse signal recovery problem [19–21]. Numerical
experiments in [19] showed that ‘p minimization with 0opo1
recovers sparse signals from fewer linear measurements than ‘1

minimization. Chartrand and Staneva [20] further generalized the
result in [19] to an ‘p variant of the restricted isometry property.
Foucart and Lai [21] presented a condition on the matrix of an
underdetermined linear system which guarantees that the solution
of the system with minimal ‘p-quasinorm is also the sparsest one.

Inspired by the recent progress in sparse representation and
‘p minimization, we propose a novel version of SRC via ‘p

minimization. We denote our method by ‘p-SRC (0opo1) to
distinguish it from the original SRC which is denoted by ‘1-SRC in
this paper. In ‘p-SRC, we use ‘p minimization as an alternative to
‘0 minimization instead of using ‘1 minimization in ‘1-SRC. In
this way, we can find a sparser and more accurate solution than
‘1-SRC does, and the optimization problem of ‘p minimization is
much easier to be solved than that of ‘0 minimization.

The rest of this paper is organized as follows. We first briefly
review the related works on sparse representation based classi-
fication in Section 2, and then we present a numerical example to
show the superiority of ‘p (0opo1) minimization over ‘1

minimization in Section 3. In Section 4, an iteration reweighted
algorithm is introduced to efficiently solve the ‘p minimization
problem and the framework of ‘p-SRC is also proposed in that
section. In Section 5, we evaluate the efficiency of the proposed
algorithm for robust face recognition on publicly available data-
base. Finally, we conclude the paper in Section 6.

2. Sparse representation based classification

Suppose we have n training samples from k object classes, the
entire training set can be denoted by A¼ ½A1,A2,. . .Ak�ARm�n,
where m is the dimension of sample, Ai,i¼ 1,2,. . .k is the set of
training samples of the ith object class. Given a test sample
yARm, the linear presentation of y can be written in terms of all
training samples A as [6]

y¼ Ax ð3Þ

where x is the coefficient vector. As the entries of the vector x

encode the identity of the test sample y, it is tempting to obtain
the solution of the linear system in Eq. (3). However, in face
recognition, the linear system y¼ Ax is typically underdeter-
mined, so its solution is not unique. Fortunately, the test sample
y can be sufficiently represented using only the training samples
from the same class, so it is natural to seek for the sparsest
solution. Intuitively, the sparsity of the coefficients vector can be

measured by the ‘0-norm of it. However, it is an NP-hard problem
to find the optimal solution of ‘0 minimization. As an alternative,
the ‘1 minimization is employed to seek for the sparse solution
for its computational convenience and efficiency, which can be
expressed in Eq. (2).

After obtaining x, we can design a sparse representation based
classification (SRC) in terms of the class reconstruction residual.
Specifically, for each class i, let di : R

n-Rn be the characteristic
function which select the coefficients associated with the ith class. For
xARn, diARn is a new vector whose only nonzero entries are the
entries in x that are associated with class i. We can approximate the
given test sample y as ŷi ¼ AdiðxÞ using the vector di from each class.
The corresponding reconstruction residual for class i is defined as

riðyÞ ¼ Jy�ŷiJ2 ð4Þ

The identity of y is then assigned to class i who has the
minimal reconstruction residual, i.e. min

i
riðyÞ.

In practical face recognition scenarios, the test sample y could
be partially corrupted or occluded. In this case, the linear
representation of y can be rewritten as

y¼ y0þe0 ¼ Ax0þe0 ¼ ½A,Ae�
x0

e0

" #
¼ Bo ð5Þ

where B¼ ½A,Ae�ARm�ðnþneÞ, Ae is the occlusion dictionary, which
can be set as an orthogonal matrix, such as identity matrix,
Fourier basis, Haar basis [6]. The linear system of y¼ Bo is also
underdetermined which does not have a unique solution for o.
However, we should note that y0 and the error e0 have sparse
representations over the training samples dictionary A and the
occlusion dictionary Ae, respectively. Accordingly, the sparsest
solution of o can be obtained by solving the following extended
‘1 minimization problem

min
o

JoJ1 subject to Bo¼ y ð6Þ

Once the sparse solution o¼ ðx=eÞ is computed, the recon-
struction residual of class i can be rewritten as

riðyÞ ¼ Jy�Aee�AdiðxÞJ2 ð7Þ

The identity of y is then assigned to class i by min
i

riðyÞ.

3. Sparse solution via ‘p minimization

The ‘1 minimization is widely employed as an alternative to ‘0

minimization in SRC. However, it is not always the case that the
optimization problem of ‘1 minimization can find the sparsest
solution. Recently, ‘p-norm (0opo1) has been proposed as an
alternative to ‘0-norm for sparse signal recovery. Numerical
experiments in [19–23] showed that the sparest solutions of
underdetermined linear system can be obtained via ‘p minimiza-
tion from different aspects.

For the sake of illustration, we consider the following simple
numerical example, which is presented in [22] to demonstrate the
superiority of weighted ‘1 minimization over ‘1 minimization.
Consider the dictionary matrix

A¼
1 2 1

2 1 1

� �
AR2�3

and the test sample y¼ 1 1
� �T

AR2, we wish to find the correct
sparse representation vector xAR3 from y¼ Ax. If we use ‘0

minimization in Eq. (1) to seek for the optimal solution, the sparsest
coding coefficients vector will be x0 ¼ 0 0 1

� �T
. In this case, the

‘0-norm of x0 is 1, and x0 is the correct and sparsest representation of
y. Fig. 1(a) shows the set of points xAR3 obeying y¼ Ax, and the ‘1

ball of radius 1 (the ‘1-norm of x0) centered at the origin. If we

use ‘1 minimization instead of ‘0 minimization to seek for the
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