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a b s t r a c t

This paper addresses the analysis problem of asymptotic stability for a class of uncertain neural

networks with Markovian jumping parameters and time delays. The considered transition probabilities

are assumed to be partially unknown. The parameter uncertainties are considered to be norm-bounded.

A sufficient condition for the stability of the addressed neural networks is derived, which is expressed

in terms of a set of linear matrix inequalities. A numerical example is given to verify the effectiveness of

the developed results.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The last few decades have witnessed successful applications of
neural networks in diverse fields including associative memory,
fault diagnosis, pattern recognition and image processing, etc. The
study of neural networks has therefore gained persistent research
interest from the early 80s, see [7,8,11,13,21,22] and the refer-
ences therein. As a major concern, the investigations on the
stability of neural networks have attracted considerable research
attention due mainly to the fact that the stability of the equili-
brium points ensures that the stored memory can be retrieved.

It is well known that time delays are often unavoidable in a
variety of industrial and engineering systems, and the existence of
time delays may lead to oscillation, instability and poor perfor-
mances of systems (see, e. g., [6,12,18]). In recent years, fruitful
literature has been available for neural networks with time delays.
Many different types of time delays, such as constant delays, time-
varying delays and distributed delays, have been taken into account
and lots of delay-independent and delay-dependent results have
been obtained for neural networks (see, for example [4,10,19,23]).
Moreover, the time-delay neural networks often involve with
parameter uncertainties that constitute another main cause for
degrading the system performances or even leading to instability.

Nevertheless, the corresponding stability analysis for discrete time-
delay neural networks has received much less attention than their
continuous-time counterpart.

On the other hand, Markovian jump systems have gained
particular research attention in the past two decades. Such class
of systems is a special class of stochastic hybrid systems with
finite operation modes, and is more appropriate to model the
dynamic systems subject to abrupt variation in their structures,
such as component failures, sudden environmental disturbance
and abrupt variations of the operating points of a nonlinear
system [2,5,20]. In practice, a neural network may be subject to
abrupt changes in its structure or network modes jumps, which
are commonly governed by a Markovian chain. Recently, several
significant research results on the time-delay neural networks
with Markovian jumping parameters have been reported by using
linear matrix inequality approach, M-matrix theory and topolo-
gical degree theory. It is worth mentioning that most of the afore-
mentioned results have been based on the implicit assumption
that the complete knowledge of transition probabilities is avail-
able. This ideal assumption inevitably limits the application scope
of the established results since, in practice, it is difficult to obtain
precisely all the transition probabilities. Very recently, some
initial efforts have been devoted to the study of the systems with
partially unknown transition probabilities [24,25]. However, the
robust stability analysis problem for time-delay neural networks
with partly unknown transition probabilities has not been fully
investigated in the literature, and this motivates our present work
of this paper.
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In this paper, we aim to address the robust stability problem for
discrete neural networks with partially unknown transition prob-
abilities and time delays. The parameter uncertainties are assumed
to be norm-bounded. By constructing a suitable Lyapunov–Krasovs-
kii function, a sufficient stability criterion is obtained such that the
considered neural networks is asymptotically stable. The proposed
criterion is given by solving a set of linear matrix inequalities,
which can be checked efficiently by using recently developed
convex optimization algorithms. A simulation example is developed
to demonstrate the validity of the proposed methods.

Notation: The notation used in the paper is fairly standard. The
superscript ‘‘T’’ stands for matrix transposition, Rn denotes the
n-dimensional Euclidean space, Rm�n is the set of all real matrices
of dimension m�n, Nþ stands for the sets of positive integers,
and I and 0 represent the identity matrix and zero matrix,
respectively. The notation P40 means that P is real symmetric
and positive definite; the notation 9 � 9 stands for the the Eucli-
dean vector norm. In symmetric block matrices or complex
matrix expressions, we use an asterisk n to represent a term that
is induced by symmetry, and diagf� � �g stands for a block-diagonal
matrix. In addition, Efxg and Efx9yg will, respectively, represent
expectation of x and expectation of x conditional on y. If A is a
matrix, lmin stands for the smallest eigenvalue of A. Matrices, if
their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Problem formulation

In this paper, we consider a discrete-time n-neuron Markovian
jumping neural network described by the following dynamical
equation:

xðkþ1Þ ¼ ðCðrðkÞÞþDCðrðkÞÞÞxðkÞþðAðrðkÞÞ

þDAðrðkÞÞÞf ðxðkÞÞþððBðrðkÞÞþDBðrðkÞÞÞf ðxðk�dÞÞ,

xðkÞ ¼fðkÞ,kA ½�d,0Þ, ð1Þ

where xðkÞ ¼ ½x1ðkÞ x2ðkÞ . . . xnðkÞ�
T is the neural state vector;

f ðxðkÞÞ ¼ ½f1ðx1ðkÞÞ f2ðx2ðkÞÞ . . . fnðxnðkÞÞ�
T represents the nonlinear

activation function with the initial condition f ð0Þ ¼ 0; CðrðkÞÞ ¼

diagfc1ðrðkÞÞ,c2ðrðkÞÞ, . . . ,cnðrðkÞÞg describes the rate with which the
each neuron will reset its potential to the resting state in isolation
when disconnected from the networks and external inputs;
AðrðkÞÞ ¼ ½aijðrðkÞÞ�n�n and BðrðkÞÞ ¼ ½bijðrðkÞÞ�n�n are, respectively,
the connection weight matrix and the delayed connection weight
matrix; dZ0 denotes the discrete time delay; fðkÞ describes the
initial condition. In addition, DAðrðkÞÞ, DBðrðkÞÞ and DCðrðkÞÞ are
time-varying parameter uncertainties that satisfy

½DAðrðkÞÞ DBðrðkÞÞ DCðrðkÞÞ� ¼MðrðkÞÞFðrðkÞ,kÞ½N1ðrðkÞÞ N2ðrðkÞÞ N3ðrðkÞÞ�,

ð2Þ

where MðrðkÞÞ,N1ðrðkÞÞ,N2ðrðkÞÞ,N3ðrðkÞÞ are real constant matrices
of appropriate dimensions, and FðrðkÞ,kÞ is an unknown time-
varying matrix function satisfying

FT ðrðkÞ,kÞFðrðkÞ,kÞr I, 8kANþ : ð3Þ

The Markov chain r(k) ðkZ0Þ takes values in a finite state
space S¼ f1;2, . . . ,sg with transition probability matrix Ĉ ¼ ½lij�

given by

Probfrðkþ1Þ ¼ j9rðkÞ ¼ ig ¼ lij, 8i,jAS,

where lijZ0 ði,jASÞ is the transition probability from i to j andPs
j ¼ 1 lij ¼ 1, 8iAS.
In this paper, we assume that some elements in the transition

probability matrix Ĉ are unknown, for example, the transition

probability matrix Ĉ may be

Ĉ ¼
l11 ? ?

? l22 ?

l31 l32 l33

2
64

3
75,

where ‘‘?’’ represents the unknown entries. For notation clarity,
for any iAS, we denote that

Si
K :¼ fj : lij is knowng, Si

UK :¼ fj : lij is unknowng: ð4Þ

Also, we denote li
K :¼

P
jA Si

K
lij throughout the paper.

The set S contains s modes of equation (1) and, for rðkÞ ¼ i, the
system matrices of the ith mode are denoted by AiþDAi, BiþDBi

and CiþDCi.
Throughout the paper, we make the following assumption.

Assumption 1 (Wang et al. [15–17]). For the activation function
f ð�Þ, there exist constants s�i and sþi (i¼ 1;2, . . . ,n) such that

s�i r
fiða1Þ�fiða2Þ

a1�a2
rsþi : ð5Þ

Remark 1. The assumption based on the activation functions f ð�Þ

considered here has been first introduced in [15]. The activation
functions described in (1) are more general than the usual
sigmoid functions and the recently commonly used Lipschitz
conditions, where the constants s�i and sþi are allowed to be
positive, negative or zero. Therefore, the activation functions
could be nonmonotonic. Such an assumption will induce the less
conservative results.

Before proceeding further, we introduce the following
definition.

Definition 1. Neural network (1) is said to be asymptotically
stable in the mean square if, for any solution x(k) of (1), the
following holds:

lim
k-1

Ef9xðkÞ92
g ¼ 0:

The main purpose of this paper is to deal with the asymptotic
stability problem for the neural network (1).

3. Main results

Before stating our main results, we introduce the following
lemmas:

Lemma 1 (Boyd et al. [1]). (Schur Complement) Given constant

matrices S1,S2,S3 where S1 ¼ ST
1 and 0oS2 ¼ ST

2, then S1þST
3

S�1
2 S3o0 if and only if

S1 ST
3

S3 �S2

" #
o0 or

�S2 S3

ST
3 S1

" #
o0: ð6Þ

Lemma 2. (S-procedure) Let L¼ LT and H and E be real matrices

of appropriate dimensions with F satisfying FFT r I. Then LþHFEþ

ETFTHTo0, if and only if there exists a positive scalar e40 such that

Lþe�1HHT
þeETEo0 or, equivalently,

L H eET

HT �eI 0

eE 0 �eI

2
64

3
75o0: ð7Þ

Lemma 3 (Liu et al. [9]). Suppose that B¼ diagfb1,b2, . . . ,bng is a

positive-semidefinite diagonal matrix. Let x¼ ½x1,x2, . . . ,xn�
T ARn,

and HðxÞ ¼ ½h1ðx1Þ,h2ðx2Þ, . . . ,hnðxnÞ�
T be a continuous nonlinear
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