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a b s t r a c t

To address two problems, namely nonlinear problem and singularity problem, of linear discriminant

analysis (LDA) approach in face recognition, this paper proposes a novel kernel machine-based rank-

lifting regularized discriminant analysis (KRLRDA) method. A rank-lifting theorem is first proven using

linear algebraic theory. Combining the rank-lifting strategy with three-to-one regularization technique,

the complete regularized methodology is developed on the within-class scatter matrix. The proposed

regularized scheme not only adjusts the projection directions but tunes their corresponding weights as

well. Moreover, it is shown that the final regularized within-class scatter matrix approaches to the

original one as the regularized parameter tends to zero. Two public available databases, namely FERET

and CMU PIE face databases, are selected for evaluations. Compared with some existing kernel-based

LDA methods, the proposed KRLRDA approach gives superior performance.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over the past decade, face recognition has been one of the
most active and exciting research topics in computer science and
information technology. The challenge to face recognition is that
the distributions of face data variations under different poses,
illuminations and expressions are very complexity and nonlinear.
Thus the linear approach, namely LDA [1], cannot give satisfactory
performance. Following the success of applying ’kernel trick’ in
support vector machine (SVM) [2], many kernel-based discrimi-
nant analysis (KDA) methods have been developed and applied to
solving nonlinear problems in pattern recognition tasks [3–13].
Kernel methods [15,16] work by implicitly mapping the input
samples into a high dimensional feature space, and making the
mapped feature space linearly separable. Nevertheless, KDA
commonly encounters singularity problem. This problem always
occurs when the total number of training samples is smaller than
the dimension of feature space. It is known that the dimension of
facial pattern vector obtained by vectorizing a facial image is very
high. For example, if the resolution of a facial image is 112�92,
then the size of facial vector attains 10 304. In such a case, the
within-class scatter matrix Sw in mapped feature space becomes

singular and direct applying that the KDA approach is impossible.
To deal with singularity problem, some kernel-based LDA
schemes, such as GDA [5], KDDA [6], K1PRDA [7], etc. methods,
have been developed based on different criteria. GDA and KDDA
address singularity problem by removing null space from Sw in
mapped feature space. However, the null space of Sw contains
much useful discriminant information for pattern classification [19].
Furthermore, it is not reasonable that the kernel matrix in GDA
method is assumed to be nonsingular. K1PRDA is a regularization
method, which uses three-to-one regularization technique [20] to
guarantee full rank of within-class scatter matrix Sw. K1PRDA
finds the optimal projection only by tuning the weights (eigen-
values) of directions (eigenvectors) while all directions are kept
with no variations. Recently, based on rank-lifting technique, a
two-step regularization Fisher discriminant analysis (2SRFD) [21]
approach has been presented to solve singularity problem. But it
just a linear method and its second regularization step must be
performed after the first step.

This paper, motivated by our previous 2SRFD [21] method,
proposes a novel kernel machine-based rank-lifting regularized
discriminant analysis (KRLRDA) method to tackle nonlinear pro-
blem and singularity problem in face recognition. Our regulariza-
tion technique also includes two regularization stages. A new
rank-lifting theorem using linear algebraic theory is first shown.
Based on this theorem, a rank-lifting parameter t is exploited to
increase the rank of matrix Fw (Sjw ¼FwFT

w) and then a d �N

column full rank matrix ~Fw is obtained, where d is the dimension
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of original feature space, N is the total number of training data.
The rank-lifted within-class scatter matrix ~S

jt

w is subsequently
derived. In most cases, the matrix ~S

jt

w is full rank and our KRLRDA
approach can be performed directly. If ~S

jt

w is still not invertible,
the second regularization step shall employ the regularization
technique proposed in the literature [20] with regularized para-
meter s. After above two regularization steps, the complete
regularized matrix ~S

jts

w is obtained. It is demonstrated that the
final regularized within-class scatter matrix ~S

jts

w approaches to
original within-class scatter matrix ~S

j
w as the regularization

parameters t and s tend to zero simultaneously. A novel KRLRDA
method is subsequently developed and applied to face
recognition.

In our KRLRDA approach, the first regularization stage adjusts
not only the directions of projection but the magnitudes (weight)
in each direction as well. The eigenvalues can be considered as
the ‘weight’ in the corresponding direction (eigenvector). In the
second regularization stage, only the weights of directions are
adjusted while the projection directions are kept invariant [20].
Especially, in most cases, the first regularization stage using our
rank-lifting strategy is sufficient to guarantee the full rank of
within-class scatter matrix, while the second regularization step
is just standby in case the first stage fails to work.

Two public available databases, namely FERET and CMU PIE
face databases, are selected for evaluations. Compared with
some existing kernel-based LDA methods, experimental results
show that the proposed KRLRDA approach gives superior
performance.

The rest of this paper is organized as follows. Detail theoretical
analysis and KRLRDA algorithm design are proposed in Section 2.
The experimental results and computational complexity are
reported in Section 3. Finally, Section 4 draws the conclusions.

2. Proposed KRLRDA method

In this section, a new kernel machine-based rank-lifting RDA
method is proposed. Details are discussed below.

2.1. Some notations

Let d be the dimension of original feature space and C be the

number of sample classes. The total original sample set X ¼
SC

j ¼ 1 Xj,

where the jth class Xj ¼ fx
j
ig

Nj

i ¼ 1 contains Nj training samples. Assume

Nð ¼
PC

j ¼ 1 NjÞ is the number of total training samples and jðxÞ :
xARd-jðxÞAF is the kernel nonlinear mapping, where F is the

mapped feature space with dimension df ð ¼ dim F Þ. The total
mapped training sample set and the jth mapped class are given by

jðXÞ ¼
SC

j ¼ 1 Xj and jðXjÞ ¼ fjðxj
iÞg

Nj

i ¼ 1, respectively. The mean of

the mapped sample class jðXjÞ and the global mean of the total

mapped samples jðxÞ are given by mj ¼ ð1=NjÞ
PNj

i ¼ 1 jðx
j
iÞ and m¼

ð1=NÞ
PC

j ¼ 1

PNj

i ¼ 1 jðx
j
iÞ, respectively. In feature space F , two scatter

matrices, namely within-class and between-class matrices, are
defined, respectively, as follows:

Sjw ¼
1

N

XC

j ¼ 1

XNj

i ¼ 1

ðjðxj
iÞ�mjÞðjðxj

iÞ�mjÞ
T
¼FwFT

w,

Sjb ¼
1

N

XC

j ¼ 1

Njðmj�mÞðmj�mÞT ¼FbF
T
b ,

where Fw ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

p
½jðxj

iÞ�mj�
j ¼ 1,...,C
i ¼ 1,...,Nj

is a df �N matrix, and Fb ¼

½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNj=N

p
Þðmj�mÞ�j ¼ 1,...,C is a df �C matrix. In addition, we define a

df �N mapped training sample matrix F�F¼ ½jðxj
iÞ�

j ¼ 1,...,C
i ¼ 1,...,Nj

ARdf�N .

The Fisher index JFðwÞ in mapped feature space F is defined by

JjðwÞ ¼
wT Sjb w

wT Sjww
, ð1Þ

where wAF .
According to the Mercer kernel function theory [14], any

solutions wAF belong to the span of all training patterns in F .
Hence there exists a coefficient column vector ~wARN such that
w¼F ~w. Substituting w¼F ~w into (1), the Fisher criterion func-
tion in the mapped feature space F can be rewritten as follows:

Jjð ~wÞ ¼
~wT ~S

j
b
~w

~wT ~S
j
w
~w,

ð2Þ

where

~S
j
b ¼FTFbF

T
bF and ~S

j
w ¼FTFwFT

wF:

KDA aims to find an optimal projection ~wopt which maximizes
the Fisher criterion function (2), namely,

~wopt ¼ argmax
~w

Jjð ~wÞ:

Above problem is equivalent to solving the following eigensys-
tem:

ð ~S
j
wÞ
�1 ~S

j
b
~w ¼ l ~w: ð3Þ

However, the matrix ~S
j
w is not invertible when singularity

problem occurs. In this case, the kernel-based LDA (KDA) method
cannot be used directly. In turn, we propose to regularize the ~S

j
w.

2.2. Theoretical analysis

To overcome singularity problem of KDA, we shall use reg-
ularization technique. The proposed regularization strategy
involves two regularization stages, namely Rank-lifting stage
and Three-to-one regularization stage. Below is the detail theore-
tical analysis on our KRLRDA approach.

In the first step, we shall need the following theorem.

Theorem 1. Given an original vector set in Rd as
SC

j ¼ 1fa
j
i

��
i¼ 1,2, . . . ,Njg, let Mj ¼ ð1=NiÞ

PNj

i ¼ 1 a
j
i , then for any constant

t ðta0Þ, the following modified vector set:

[C
j ¼ 1

faj
i�MjþtMjji¼ 1,2, . . . ,Njg

is equivalent to the original one.

Proof. For j¼ 1,2, . . . ,C, let Aj ¼
SNj

i ¼ 1fa
j
ig and Bj ¼

SN1

i ¼ 1fa
j
1�Mjþ

tMjg. It is easy to see that set Bj can be expressed by the linear

combination of set Aj. In the following, it will be shown that Aj can
also be expressed by the linear combination of Bj. To this end,

assume bj
i ¼ a

j
i�MjþtMj, i¼ 1,2, . . . ,Nj, and then Bj ¼

SNj

i ¼ 1fb
j
ig.

Since

XNj

i ¼ 1

bj
i ¼

XNj

j ¼ 1

ðaj
i�MjþtMjÞ ¼Njt �Mj,

and ta0, it yields that Mj ¼ ð
PNj

i ¼ 1 b
j
iÞ=ðNjtÞ, and then aj

i ¼ bj
iþ

ð1�tÞð
PNj

k ¼ 1 b
j
iÞ=ðNjtÞ,i¼ 1,2, . . . ,Nj. Therefore, set Aj is the linear

combination of set Bj. Above analysis demonstrates that Aj is

equivalent to Bj. It means that the set
SC

j ¼ 1fa
j
iji¼ 1,2, . . . ,Njg is
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