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In this paper, we study a new class of stochastic Cohen–Grossberg neural networks with reaction-

diffusion and mixed delays. Without the aid of nonnegative semimartingale convergence theorem, the

method of variation parameter and linear matrix inequalities technique, a set of novel sufficient

conditions on the exponential stability for the considered system is obtained by utilizing a new

Lyapunov–Krasovskii functional, the Poincaré inequality and stochastic analysis theory. The obtained

results show that the reaction-diffusion term does contribute to the exponentially stabilization of the

considered system. Therefore, our results generalize and improve some earlier publications. Moreover,

two numerical examples are given to show the effectiveness of the theoretical results and demonstrate

that the stability criteria existed in the earlier literature fail.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the past years, the stability problem for a class of Cohen–
Grossberg neural networks has received much research attention,
and many good results related to this problem have been
reported, see, e.g. [1–3,5–8,11,15,16,18,19,21,24,25,27] and the
references therein. The reason for causing this result is twofold.
On one hand, Cohen–Grossberg neural networks have been
widely applied in many areas including signal processing, image
processing, pattern recognition, fault diagnosis, associative mem-
ory, combinatorial optimization, and so on. And on the other
hand, this model generalizes some other models such as the
Hopfield neural networks, recurrent neural networks, cellular
neural networks and bi-directional associative memory neural
networks. Therefore, it is important to study the stability problem
for a class of Cohen–Grossberg neural networks in theories and
applications.

However, a large number of results existed in the literature
mainly focused on the traditional neural network models, which

are described by ordinary differential equations. But in the factual
operations, diffusion effects cannot be avoided in the neural
network model when electrons are moving in asymmetric elec-
tromagnetic fields. To cope with this case, we must consider the
state variables that are varying with the time and space variables.
It has been recognized that the neural network with diffusion
term should be expressed by partial differential equations. It is
inspiring that the subject of neural networks with diffusion term
has gained many researchers, and there have appeared lots of results
on the stability analysis in the literature [4,6,8–10,12,13,16–19,23].
For instance, Cui and Lou [4] studied the global asymptotic stability
for a class of bi-directional associative memory neural networks with
distributed delays and reaction-diffusion terms. Li and Song [6]
investigated the global exponential stability of reaction-diffusion
recurrent neural networks with delays. By establishing an integro-
differential inequality with impulsive initial conditions and applying
M-matrix theory, Li and Li [8] obtained some sufficient conditions
ensuring the existence, uniqueness, global exponential stability and
global robust exponential stability of equilibrium point for impulsive
Cohen–Grossberg neural networks with distributed delays and reac-
tion-diffusion terms. Liang and Cao [10] studied the existence,
uniqueness and global exponential stability of the equilibrium point
of delayed reaction-diffusion recurrent neural networks by using the
properties of diffusion operator and the general Halanay inequality.
Based on the topological degree theory and linear matrix inequality
technique, Pan and Zhong [16] obtained a set of sufficient conditions
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to ensure the existence, uniqueness and global exponential stability of
the equilibrium point. However, all of the above-mentioned works
did not consider the effects of noise perturbations. In other words, the
discusses about those results were restricted to only the case of
deterministic neural networks.

On the other hand, noise disturbance is a major source for
causing instability and poor performances in neural networks. In
fact, the synaptic transmission in real neural networks can be
viewed as a noisy process introduced by random fluctuations
from the release of neurotransmitters and other probabilistic
causes. Therefore, noise disturbances should be taken into
account when studying the stability of neural networks, and the
corresponding neural networks with noise disturbances are called
stochastic neural networks. With respect to stochastic Cohen–
Grossberg neural networks with diffusion term, however, there
are only few results in the literature on the stability. Therefore,
there is enough room to develop new approaches and techniques
to study the stability of stochastic Cohen–Grossberg neural net-
works with diffusion term.

Motivated by the above discussion, in this paper we investi-
gate the exponential stability for a class of stochastic reaction-
diffusion Cohen–Grossberg neural networks with mixed delays.
By using a new Lyapunov–Krasovskii functional, the Poincaré
inequality and stochastic analysis theory, a set of novel sufficient
conditions is obtained to guarantee the exponential stability for
this class of new Cohen–Grossberg neural networks. It should be
mentioned that the approach and technique provided here are
quite different from the existed approaches such as the nonne-
gative semimartingale convergence theorem [14], the method of
variation parameter [24] and linear matrix inequalities technique
[22]. It is also worth pointing out that the stability criteria
obtained in [14,22,24] were independent on the reaction-diffu-
sion term, which means that the role of diffusion terms for
exponentially stabilizing reaction-diffusion Cohen–Grossberg
neural networks was ignored. However, different from those
given in [14,22,24], our obtained results are dependent on the
reaction-diffusion term and show that the reaction-diffusion term
does contribute to the exponentially stabilization for the consid-
ered system. Therefore, our results generalize and improve some
earlier publications. Moreover, two numerical examples are given
to show the effectiveness of the theoretical results and demon-
strate that the stability criteria existed in the earlier literature fail.

The remainder of this paper is organized as follows. In Section
2, we introduce the model of a new class of stochastic Cohen–
Grossberg neural networks with both reaction-diffusion and
mixed delays, and present some necessary assumptions. Without
the aid of nonnegative semimartingale convergence theorem, the
method of variation parameter and linear matrix inequalities
technique, our main results are established by using some new
approaches and techniques in Section 3. In Section 4, two
numerical examples are given to show the effectiveness of the
obtained results. Finally, in Section 5, the paper is concluded with
some general remarks.

2. Model description and problem formulation

In this paper we consider a new class of stochastic reaction-
diffusion Cohen–Grossberg neural networks, which is described
by the following integro-differential equation:
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where yiðt,xÞ is the state variable of the ith neuron at time t and in
space variable x, aiðyiðt,xÞÞ represents an amplification function of
the ith unit at time t and in space variable x, and biðyiðt,xÞÞ is the
behaved function of the ith unit at time t and in space variable x.
The constants aij, bij and cij are the connection weight strengthes
of the jth unit on the ith unit at time t. fjðyjðt,xÞÞ,gjðyjðt,xÞÞ and
hjðyjðt,xÞÞ are the neuron activation functions of the jth unit at
time t and in space variable x. The smooth function Dik ¼

Dikðt,x,yÞZ0 is a diffusion operator, S is a compact set with a
smooth boundary @S of class C2 and measure mes S40 in Rm. The
noise perturbation sij : ½0,þ1Þ �R�R�R� S-R is a Borel
measurable function, and wjðtÞ,j¼ 1,2, . . . ,n are scalar standard
Brownian motions defined on a complete probability space
ðO,F ,PÞ with a natural filtration fF tgtZ0. The constants t1 and
t2 are time delays.

Let y¼ ðy1,y2, . . . ,ynÞ
T and L2ðSÞ is the space of scalar value

Lebesgue measurable functions on S, which is a Banach space for
the L2-norm
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continuous function f from ½�t,0� to Rn with the uniform norm
JfJ¼ sup�tr sr0jfðsÞj. Denote by L2

F0
ð½�t,0�;Rn

Þ the family of all
F t measurable, Cð½�t,0�;Rn

Þ-valued stochastic variables f¼
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for the correspondent expectation operator with respect to the
given probability measure P. Then, the initial and the Neumann
boundary condition of system (1) is given as follows:
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Throughout this paper, we make the following assumptions.

Assumption 1. There exist positive constants a0
i ,a1

i ði¼ 1,2, . . . ,nÞ
such that

0oa0
i raiðyiðt,xÞÞra1

i

for all xAR, i¼ 1,2, . . . ,n.

Assumption 2. There exist positive constants gi ði¼ 1,2, . . . ,nÞ
such that

yiðt,xÞbiðyiðt,xÞÞZgiy
2
i ðt,xÞ

for all xAR, i¼ 1,2, . . . ,n.

Remark 1. The function biðyiðt,xÞÞ in [14,24] is required to be
differentiable and its derivative is required to be over zero. However,
the function biðyiðt,xÞÞ in Assumption 2 is not necessarily differenti-
able. For example, if taking biðyiðt,xÞÞ ¼ 2jyiðt,xÞj ði¼ 1,2, . . . ,nÞ, then
Assumption 2 is satisfied, but the conditions in [14,24] do not hold.
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