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a b s t r a c t

We extend an existing spiking neural model of arachnid prey orientation sensing with a view to

potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing

a simulated arachnid in a physics simulation so that sensory signals from the neural model can be

translated into movement to orient towards the prey. We have also created a spiking neural distance

estimation model with a complementary motor model that enables walking towards the prey. Results

from testing of the neural and motor aspects show that the neural models can represent actual prey

angle and distance to a high degree of accuracy: an average error of approximately 71 in estimating prey

angle and 1 cm in the estimation of distance to prey. The motor models consistently show the correct

turning and walking responses but the overall accuracy is reduced with an average error of around 151

for angle and 1.25 cm for distance. In the case of orientation this is still in line with the error rate of

between 121 and 151, which has been observed in real arachnids.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Navigation and localisation tasks in robotics generally require
some sort of sensorimotor coordination. In the simplest case
infrared (IR) or bump sensors can be set up to send information
directly to wheel motors to steer the robot toward or away from
objects in the environment. An example of this type of architec-
ture is the Braitenberg vehicle [1], where connections between
sensors and wheel motors can be set up to produce various
different ‘behaviours’ such as attraction and avoidance. More
sophisticated implementations have used evolutionary techniques
to evolve more complex controllers, for example the work described
in Ref. [2] attempted to mimic how adaptation occurs in natural
systems by evolving for a progressively more demanding set of tasks
ranging from simple forward locomotion to distinguishing between
two shapes in the environment. Following experiments with simu-
lated agents, the methods were replicated on wheeled robots and
performed equally well. Another approach, described in Ref. [3],
concentrated on learning sensorimotor coordination by direct inter-
action with the environment. Here an elegant and simple spiking
neural network model including synaptic plasticity was used for
obstacle avoidance. This was implemented on several versions of
wheeled robot. The design of the neural network was inspired by

the behaviour of the sea slug (Aplysia), which despite being a very
simple organism is capable of associative and non-associative
learning. In a first set of experiments the robots were equipped
only with left and right bump sensors and the neural system was
wired to include a reflex response to back away after bumping
into an obstacle. In subsequent experiments, the neural network
was rewired to include input from infrared (IR) sensors and also
presynaptic facilitation was added. The results of these experiments
showed that first and second order classical conditioning were
possible: the robot firstly ‘learned’ (via synaptic changes) to associ-
ate IR sensor input with bumping into objects and thus to avoid
them and subsequently it learned to associate obstacles with a
second order stimulus (their shadow). An interesting approach not
involving neural methods is described in Ref. [4]. Here vibration
signals are used as a communication method between a group of
wheeled robots to allow them to locate each other. Two signals in
different frequency bands are transmitted and they are detected by
a matched filter technique, which calculates the cross-correlation
between the received and expected signal.

To perform more complex tasks such as localisation (enabling
the robot to sense its own location in the environment) and
navigation (obstacle detection and avoidance), vision systems are
usually employed. An overview of robot localisation and object
recognition using two popular techniques: SLAM (Simultaneous
Location and Mapping) and SIFT (Scale Invariant Feature Trans-
form) is given in Ref. [5]. Metrical SLAM approaches construct
a grid-based map where each cell has a probability of containing
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an object. Downsides of this method are that it is memory-hungry
and very dependant on sensor robustness. Topological SLAM uses
a graph-based approach where relationships between significant
places are stored instead. This approach is less memory-hungry
and of lower complexity than metrical SLAM but graph updating
is difficult to do accurately [5]. SIFT is concerned with both the
detection and recognition of objects and requires that a database
of object features (SIFT descriptors) is constructed for matching
with real objects. An important feature of SIFT is that it can
simultaneously detect and recognise objects.

Despite the fact that the approaches previously discussed are
successful it is still the case that current robot capabilities cannot
match those of real organisms. The work presented here takes a
slightly different approach to robot sensorimotor coordination
and uses methods inspired by how a real organism solves a
sensorimotor coordination problem.

The field of Computational Neuroethology encompasses the
modelling of real animal behaviour grounded in biologically
realistic neural models [6]. Such modelling is extremely useful
in robotics research as it can provide insights into how nature has
equipped animals with efficient survival strategies and moreover
how fairly complex behaviours can be generated by minimal
neural architectures: natural systems manage to achieve speed,
fault tolerance and flexibility with low power requirements and
solve problems we find very difficult to implement on machines.
An important component of Computational Neuroethology is to
model situations where entire animal ‘behaviours’ are generated
from interaction with the environment: i.e. ‘closing the external
feedback loop from motor output and sensory input’ [6]. An
additional benefit in making a serious study of natural sensor-
imotor systems is to anticipate the future direction of robotic
hardware, in particular the field of Neuromorphic Engineering.
Advances in this area are now making it possible to simulate large
neural networks in hardware in real time. Such ‘neural chips’ are
massively parallel arrays of processors that can simulate thou-
sands of neurons simultaneously in a fast, energy efficient way
and compute using similar methods to the way real neurons
behave. Therefore it is becoming much more feasible for research-
ers to actually implement biologically realistic models on board
autonomous robots.

The original contribution of the current work is to extend a
neural model proposed in Refs. [7,8] in two ways. Firstly, by
creating a physics simulation and visualisation of a virtual
arachnid and linking this to the neural model so that vibration
signals result in reflexive turning behaviour to face the direction
of a virtual prey. Secondly, to add a neural distance sensing
mechanism and a complementary motor system to cause walking
towards prey following an orientation movement. The work of
Ref. [9] describes a previous implementation of localisation for a
hexapod robot, which borrows from some of the orientation
sensing ideas in Refs. [7,8] but does not use a neural approach.
Also, finding the location of a vibration source is done using a
completely separate system using radio beacons. In our work we
add a prey distance estimation mechanism based upon the same
biological neural network used for the orientation sensing with
the aim of trying to explain/predict how the real animal might
achieve distance sensing given that we know the kinds of sensors
it has and its neurobiology. An integrated orientation and distance
estimation method enables the future possibility of full localisa-
tion and tracking behaviour for robots using a minimal-architec-
ture spiking neural network. The structure of this paper is as
follows: Section 2 gives an overview of the biological theory
behind the model of arachnid orientation behaviour and previous
works which have developed computational models of it. Section 3
describes how the model in Ref. [7] has been extended by adding
orientation motor behaviour in a physics simulation of an arachnid.

Section 4 explains the rationale for and implementation of a
distance estimation method based upon biological evidence from
vibration detection experiments with real arachnids. Section 5
presents some results from testing the orientation and distance
sensing behaviour of the model in response to a randomly placed
prey. The final section summarises the performance of the current
model and makes some suggestions for future work.

2. Modelling prey orientation detection in arachnids

The work of Brownell et al [10,11] examined the orientation
behaviour of the Desert Scorpion, Paruroctonus mesaensis, which is
nocturnal and able to locate prey purely by detection of vibrations
carried by the sand substrate. The vibrations are picked up by
detectors called Basitarsal Compound Slit Sensilla (BCSS), which are
present on the tarsi of the scorpion’s eight legs. The experiments
consisted of measuring the orientation behaviour in response to
artificially created mechanical vibration signals. In order to explain
the neural basis of the orientation mechanism they also looked at
the results of blocking the signals to one or more legs at a time and
observing the degradation in turning accuracy. The mathematical
model described in Refs. [7,8] was based upon the findings of this
experimental work and was able to reproduce similar results to
those seen in the real animal. The model is based upon a Spiking
Neural Network (SNN). In contrast to traditional Artificial Neural
Networks (ANNs), which are rate-based, spiking neurons compute
with pulses, much like real neurons do. In the simplest form of such
models the membrane voltage of a neuron increases as spikes are
received from connecting neurons. Once a threshold value is
exceeded, the neuron spikes and the membrane voltage is reset.
Gradually, the neuron recovers during a refractory period until it is
able to spike again. In Ref. [12], Maass demonstrated that SNNs are
more powerful than ANNs as they can compute the same functions
using less neurons. The original orientation model consists of a ring
of eight sensory spiking neurons representing the basitarsal com-
pound slit sensilla (BCSS) mechanoreceptors present on each of the
arachnid’s legs. In the real animal the legs are held in a ‘ready’ stance
at specific orientations relative to the body (7181, 7541, 7901,
71401). These sensory neurons are linked with excitatory connec-
tions to eight command neurons that represent control structures in
the Sub-Oesophageal Ganglion (SOG), a major component of the
nervous system in arachnids. The model assumes that the command
neurons are responsible for both integration of sensory signals and
executing motor commands. In reality these SOG neurons may relay
sensory information to the arachnid ‘brain’ (located in the Supra-
Oesophageal Ganglion), which then sends signals back to control the
legs. Each BCSS/command neuron pair is linked to an inhibitory
interneuron. Fig. 1 illustrates the arrangement and connectivity of
neurons. For clarity, only connections through three legs and one
interneuron are shown.

Command neurons connect in ‘triads’ to inhibitory interneur-
ons (Fig. 1 illustrates one triad), which are in turn connected to a
command neuron on the opposite side of the network. The
placement of legs, and thus sensors at intervals around the body
determines the information available to the arachnid to enable it
to estimate the prey orientation: the crucial information is
actually the delay between activation of the sensors of each leg
as the wave signal arrives. As shown in Fig. 1, each command
neuron receives both excitatory and inhibitory signals from BCSS
sensory neurons. Excitatory signals come from the BCSS neuron
directly linked to a command neuron and inhibitory signals come
from the inhibitory triad on the opposite side of the network. The
‘time window’ of activation of a command neuron depends upon
the delay between activation and inhibition and the number of
spikes generated depends upon the length of the time window in
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