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a b s t r a c t

We introduce a fast sparse approximation schemes of extreme learning machine (ELM) named FSA-ELM
of extreme learning machine (ELM). Our algorithms have two compelling features: low complexity and
sparse solution. Experiments on benchmark data sets show that the proposed algorithm obtains sparse
classifiers at a rather low complexity without sacrificing the generalization performance. As validated by
the simulation results, FSA-ELM tends to have better scalability and achieves similar or much better
generalization performance with much faster learning speed than the traditional ELM algorithm.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the classification problem, along with corresponding class
labels, a set of samples of input vectors is given, and the task is to
find a deterministic function that best represents the relation
between input vectors and class labels. A successful method for
solving the classification problem is the least squares support
vector machine (LS-SVM) [1,2], which attempts to minimize the
least square error on the training samples while simultaneously
maximizing the margin between two classes. Extensive empirical
comparisons [3] show that LS-SVM achieves good performance on
various classification problems, but two obvious limitations per-
sist. First, the training procedure of LS-SVM amounts to solving a
set of linear equations [4]. Although the training problem is
solvable, it is not easy to solve for a large-scale data set using
the classical techniques, e.g., the Gaussian elimination, because
their computational complexity usually scales cubically with the
size of the training samples. Secondly, the solution of LS-SVM lacks
sparseness and hence, the test speed is significantly slower than
that of other algorithms, such as the support vector machine
(SVM) [5,6] and neural networks (NNs) [7,8,18,21].

Many researchers have attempted to develop methods to
overcome these aforementioned two limitations. As a fast algo-
rithms for LS-SVM, Suykens et al. [9] presented a conjugate
gradient algorithm, and Chu et al. [10] proposed an improved
conjugate gradient algorithm. Although these algorithms achieve
low complexity, their resulting solutions are not sparse. Hence, the

second limitation persists. To address the sparseness of LS-SVM,
Suykens et al. [11,12,19] adopted a simple approach; they intro-
duced sparseness by sorting the support value spectrum (SVS), i.e.,
the absolute value of the solution of LS-SVM. Kruif and Vries [13]
presented a more complicated pruning mechanism that omits the
sample bearing the least error after it has been omitted. Zeng and
Chen [14] used an SMO-based pruning method. However, these
algorithms require a set of linear equations (gradually decreasing
in size) to be solved multiple times, and hence involves high
computational costs. Therefore, the first limitation persists. More-
over, Suykens et al. [15] proposed a fixed-size LS-SVM fast-finding
algorithm for obtaining the sparse approximate solution of LS-
SVM. Recently, Hoegaerts et al. [16] proposed a similar approach to
solving the kernel partial least squares regression. Jiao et al. [17]
presented a fast greedy algorithm for LS-SVM that attempts to
overcome the two limitations simultaneously. Huang et al. inves-
tigated the convex incremental ELM and the enhanced random
search-based incremental ELM in [24] respectively. Huang et al. in
[25] showed that single SLFNs with randomly generated additive
or RBF nodes with a widespread of piecewise continuous activa-
tion functions can universally approximate any continuous target
function on any compact subspace of the Euclidean space.
Furthermore, Feng et al. in [26] addressed the error minimized
ELM with growth of hidden nodes. Previous studies have investi-
gated error minimized ELM (EM-ELM) as an error minimization-
based method in which the number of hidden nodes can grow
one-by-one or group-by-group until optimal. By modifying the
classic forward selection algorithm, a constructive hidden nodes
selection method for ELM (CS-ELM) [27] was proposed, which is
less greedy and has no matrix decompositions. At each step of CS-
ELM, the hidden node with an output that has the highest
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correlation with the current residual is selected. The standard ELM
algorithm proposed in [29,30] can approximate any target con-
tinuous function and classify any disjoint regions created by the
designer of the classifier network. Huang et al. [23] showed that
both LS-SVM and PSVM can be simplified by removing the term
bias b; the resultant learning algorithms are unified with ELM.
Instead of different variants being requested for different types of
applications, ELM can be applied in regression and multiclass
classification applications directly. ELM can work with a wide
variety of feature mappings (including Sigmoid networks, RBF
networks, trigonometric networks, threshold networks, fuzzy
inference systems, fully complex neural networks, high-order
networks, and ridge polynomial networks). In contrast to the
algorithms mentioned previously, FSA-ELM can solve the sparse-
ness issue, and the test speed is very high. The proposed algorithm
tends to have better scalability and achieves a similar or much
better generalization performance at much higher learning speed
than the traditional ELM algorithm.

2. A brief review of ELM

This section briefly reviews the ELM proposed in [9,10]. A key
principle of ELM is that one may randomly choose and fix the
hidden node parameters. After the hidden nodes parameters have
been chosen randomly, SLFN becomes a linear system where the
output weights of the network can be determined analytically
using a simple generalized inverse operation of the hidden layer
output matrices.

2.1. Extreme learning machine (ELM)

The output of an SLFN with N hidden nodes (additive or RBF
nodes) can be represented by

f NðxÞ ¼ ∑
N

i ¼ 1
βiGðx;wi; biÞ; xARn; biARn; ð1Þ

where wi and bi are the learning parameters of hidden nodes, βi is
the weight connecting the ith hidden node to the output node, and
Gðx;wi; biÞ is the output of the ith hidden node with respect to the
input x. For additive hidden nodes with the sigmoid or threshold
activation function Gðx;wi; biÞ, gðxÞ : R-R; is given by

Gðx;wi; biÞ ¼ gðwixþbiÞ; aiAR ð2Þ
where ai is the weight vector connecting the input layer to the ith
hidden node, bi is the bias of the ith hidden node, and wix denotes
the inner product of vectors ai and x in Rn: For RBF hidden nodes
with the Gaussian or triangular activation function gðxÞ : R-R;
Gðx;wi; biÞ is given by

Gðx;wi; biÞ ¼ gðbi‖x�wi‖Þ; biARþ ; ð3Þ
where wi and bi are the center and the impact factor of ith RBF
node. Rþ indicates the set of all positive real values.

For N arbitrary distinct samples ðxk; tkÞARn � Rm if a SLFN with
N hidden nodes can approximate these N samples with zero error,
it then implies that there exist βi; wi and bi such that

∑
N

i ¼ 1
βiGðxk;wi; biÞ ¼ tk; k¼ 1;…;N ð4Þ

Eq. (4) can be written compactly as

Ηβ¼ T; ð5Þ
where

Ηðw1;…;wN ; x1;…; xN ; b1;…;bNÞ

¼
Gðx1;w1; b1Þ ⋯ Gðx1;wN ; bNÞ

⋮ ⋯ ⋮
GðxN ;w1; b1Þ ⋯ GðxN ;wN ; bNÞ

2
64

3
75
N�N

ð6Þ

β¼
βT
1

⋮
βT
N

2
664

3
775
N�M

and T¼
tT1
⋮
tTN

2
64

3
75
N�M

: ð7Þ

Η is called the hidden layer output matrix of the network [22,23];
the ith column of Η is the ith hidden node's output vector with
respect to inputs x1; x2;…; xN and the kth row of Η is the output
vector of the hidden layer with respect to input xk:

Huang et al. [20,24,25,28] proved that for SLFNs with additive
or RBF hidden nodes, one may randomly choose and fix the hidden
node parameters and then analytically determine the output
weights when approximating any continuous target function. It
should be noted that the proof of universal approximation is
shown to be valid for SLFNs with a general type of hidden nodes,
i.e., in the form of sigmoid, RBF, or a hybrid of both [24,25].

In this regard, for N arbitrary distinct samples ðxk; tkÞ, in order
to obtain an arbitrarily small non-zero training error, one may
randomly generate hidden nodes (with random parameters
ðwi; biÞ). Eq. (5) then becomes a linear system and the output
weights β are estimated as

β̂¼Η†T; ð8Þ
where Η† is the Moore–Penrose generalized inverse [30] of the
hidden layer output matrix H: The output weights are calculated in
a single step here. This avoids any lengthy training procedure
where the network parameters are adjusted iteratively with
appropriately chosen control parameters (learning rate, learning
epochs, etc.). The three-step ELM algorithm [27] can be summar-
ized as follows:

ELM Algorithm. Given a training set ℕ¼ fðxk; tkÞ xj kARn;

tkA Rj m; k¼ 1;…;Ng; activation function gðxÞ and hidden nodes ~N ,

Step 1: Randomly assign hidden node parameters
ðwi; biÞ; i¼ 1;…; ~N :

Step 2: Calculate the hidden layer output matrix H:

Step 3: Calculate the output weight β : β¼H†T:

where H; β, and T are defined as Formulas (6) and (7).

2.2. Minimum norm least squares (LS) solution of SLFNs

It is very interesting that, unlike the most common under-
standing that all the parameters of SLFNs need to be adjusted, the
input weights wi and the hidden layer biases bi are in fact not
necessarily tuned and the hidden layer output matrix Η can
actually remain unchanged once random values have been
assigned to these parameters in the beginning of learning. For
fixed input weights wi and the hidden layer biases bi, seen in Eq.
(9), to train an SLFN is simply equivalent to finding a least squares
solution β̂ of the linear system Ηβ¼ T

‖Ηðŵ1;…; ŵ ~N ; b̂1;…; b̂ ~N Þβ̂�Τ‖

¼ min
wi ;bi ;β

‖Ηðw1;…;w ~N ; b̂1;…; b̂ ~N Þβ�T‖ ð9Þ

‖Ηðw1;…;w ~N ; b1;…; b ~N Þβ̂�Τ‖

¼min
β

‖Ηðw1;…;w ~N ;b1;…; b ~N Þβ�Τ‖: ð10Þ

If the number ~N of hidden nodes is equal to the number N of
distinct training samples, ~N ¼N, matrix Η is square and invertible
when the input weight vectors wi and the hidden biases bi are
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