Neurocomputing 128 (2014) 96-103

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

NEUROCOMPUTING

NEUROCOMPUTING
LETTERS

Fast sparse approximation of extreme learning machine

Xiaodong Li, Weijie Mao *, Wei Jiang

@ CrossMark

State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control Zhejiang University, Yuquan Campus,

Hangzhou 310027, PR China

ARTICLE INFO ABSTRACT

Article history:

Received 1 September 2012
Received in revised form

17 December 2012

Accepted 15 January 2013
Available online 26 October 2013

Keywords:

Fast greedy algorithm

Extreme learning machine (ELM)
Sparse approximation

We introduce a fast sparse approximation schemes of extreme learning machine (ELM) named FSA-ELM
of extreme learning machine (ELM). Our algorithms have two compelling features: low complexity and
sparse solution. Experiments on benchmark data sets show that the proposed algorithm obtains sparse
classifiers at a rather low complexity without sacrificing the generalization performance. As validated by
the simulation results, FSA-ELM tends to have better scalability and achieves similar or much better
generalization performance with much faster learning speed than the traditional ELM algorithm.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the classification problem, along with corresponding class
labels, a set of samples of input vectors is given, and the task is to
find a deterministic function that best represents the relation
between input vectors and class labels. A successful method for
solving the classification problem is the least squares support
vector machine (LS-SVM) [1,2], which attempts to minimize the
least square error on the training samples while simultaneously
maximizing the margin between two classes. Extensive empirical
comparisons [3] show that LS-SVM achieves good performance on
various classification problems, but two obvious limitations per-
sist. First, the training procedure of LS-SVM amounts to solving a
set of linear equations [4]. Although the training problem is
solvable, it is not easy to solve for a large-scale data set using
the classical techniques, e.g., the Gaussian elimination, because
their computational complexity usually scales cubically with the
size of the training samples. Secondly, the solution of LS-SVM lacks
sparseness and hence, the test speed is significantly slower than
that of other algorithms, such as the support vector machine
(SVM) [5,6] and neural networks (NNs) [7,8,18,21].

Many researchers have attempted to develop methods to
overcome these aforementioned two limitations. As a fast algo-
rithms for LS-SVM, Suykens et al. [9] presented a conjugate
gradient algorithm, and Chu et al. [10] proposed an improved
conjugate gradient algorithm. Although these algorithms achieve
low complexity, their resulting solutions are not sparse. Hence, the

* Corresponding author. Tel.: +86 136 0581 4511.
E-mail address: wjmao@iipc.zju.edu.cn (W. Mao).

0925-2312/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2013.01.064

second limitation persists. To address the sparseness of LS-SVM,
Suykens et al. [11,12,19] adopted a simple approach; they intro-
duced sparseness by sorting the support value spectrum (SVS), i.e.,
the absolute value of the solution of LS-SVM. Kruif and Vries [13]
presented a more complicated pruning mechanism that omits the
sample bearing the least error after it has been omitted. Zeng and
Chen [14] used an SMO-based pruning method. However, these
algorithms require a set of linear equations (gradually decreasing
in size) to be solved multiple times, and hence involves high
computational costs. Therefore, the first limitation persists. More-
over, Suykens et al. [15] proposed a fixed-size LS-SVM fast-finding
algorithm for obtaining the sparse approximate solution of LS-
SVM. Recently, Hoegaerts et al. [16] proposed a similar approach to
solving the kernel partial least squares regression. Jiao et al. [17]
presented a fast greedy algorithm for LS-SVM that attempts to
overcome the two limitations simultaneously. Huang et al. inves-
tigated the convex incremental ELM and the enhanced random
search-based incremental ELM in [24] respectively. Huang et al. in
[25] showed that single SLFNs with randomly generated additive
or RBF nodes with a widespread of piecewise continuous activa-
tion functions can universally approximate any continuous target
function on any compact subspace of the Euclidean space.
Furthermore, Feng et al. in [26] addressed the error minimized
ELM with growth of hidden nodes. Previous studies have investi-
gated error minimized ELM (EM-ELM) as an error minimization-
based method in which the number of hidden nodes can grow
one-by-one or group-by-group until optimal. By modifying the
classic forward selection algorithm, a constructive hidden nodes
selection method for ELM (CS-ELM) [27] was proposed, which is
less greedy and has no matrix decompositions. At each step of CS-
ELM, the hidden node with an output that has the highest

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.01.064
http://dx.doi.org/10.1016/j.neucom.2013.01.064
http://dx.doi.org/10.1016/j.neucom.2013.01.064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.01.064&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.01.064&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.01.064&domain=pdf
mailto:wjmao@iipc.zju.edu.cn
http://dx.doi.org/10.1016/j.neucom.2013.01.064

X. Li et al. / Neurocomputing 128 (2014) 96-103 97

correlation with the current residual is selected. The standard ELM
algorithm proposed in [29,30] can approximate any target con-
tinuous function and classify any disjoint regions created by the
designer of the classifier network. Huang et al. [23] showed that
both LS-SVM and PSVM can be simplified by removing the term
bias b; the resultant learning algorithms are unified with ELM.
Instead of different variants being requested for different types of
applications, ELM can be applied in regression and multiclass
classification applications directly. ELM can work with a wide
variety of feature mappings (including Sigmoid networks, RBF
networks, trigonometric networks, threshold networks, fuzzy
inference systems, fully complex neural networks, high-order
networks, and ridge polynomial networks). In contrast to the
algorithms mentioned previously, FSA-ELM can solve the sparse-
ness issue, and the test speed is very high. The proposed algorithm
tends to have better scalability and achieves a similar or much
better generalization performance at much higher learning speed
than the traditional ELM algorithm.

2. A brief review of ELM

This section briefly reviews the ELM proposed in [9,10]. A key
principle of ELM is that one may randomly choose and fix the
hidden node parameters. After the hidden nodes parameters have
been chosen randomly, SLFN becomes a linear system where the
output weights of the network can be determined analytically
using a simple generalized inverse operation of the hidden layer
output matrices.

2.1. Extreme learning machine (ELM)

The output of an SLFN with N hidden nodes (additive or RBF
nodes) can be represented by

N
@)=Y BiGx;wi,b), xeR", bieR", (1)
i=h

where w; and b; are the learning parameters of hidden nodes, f; is
the weight connecting the ith hidden node to the output node, and
G(x; w;, by) is the output of the ith hidden node with respect to the
input x. For additive hidden nodes with the sigmoid or threshold
activation function G(x; wj, b;), g(x) : R—R, is given by

G(x;w;, b)) =g(wix+b;), a;eR (2)

where a; is the weight vector connecting the input layer to the ith
hidden node, b; is the bias of the ith hidden node, and w;x denotes
the inner product of vectors a; and x in R". For RBF hidden nodes
with the Gaussian or triangular activation function g(x): R—R,
G(x; w;, by) is given by

G(x; Wi, by) = g(billx—wil)), bieR", 3)

where w; and b; are the center and the impact factor of ith RBF
node. R indicates the set of all positive real values.

For N arbitrary distinct samples (X, t,) e R" x R™ if a SLFN with
N hidden nodes can approximate these N samples with zero error,
it then implies that there exist $;, w; and b; such that

N

'ZlﬁiG(xIdwiabi):tk, k=1,...,N (4)
1=

Eq. (4) can be written compactly as

Hp=T, 5)
where

H(wy, ...,wy, Xq,....Xn, b1,....,by)

G(X1;W1,by) G(X1; Wy, by)
= : : (6)
G(Xn:W1,by) Gxn:WN. by |
B t]
f=1: and T=|: . (7)
T T
Bn NxM ty NxM

H is called the hidden layer output matrix of the network [22,23];
the ith column of H is the ith hidden node's output vector with
respect to inputs X1, Xy, ..., Xy and the kth row of H is the output
vector of the hidden layer with respect to input x;.

Huang et al. [20,24,25,28] proved that for SLFNs with additive
or RBF hidden nodes, one may randomly choose and fix the hidden
node parameters and then analytically determine the output
weights when approximating any continuous target function. It
should be noted that the proof of universal approximation is
shown to be valid for SLFNs with a general type of hidden nodes,
i.e,, in the form of sigmoid, RBF, or a hybrid of both [24,25].

In this regard, for N arbitrary distinct samples (X, t;), in order
to obtain an arbitrarily small non-zero training error, one may
randomly generate hidden nodes (with random parameters
(w;, b))). Eq. (5) then becomes a linear system and the output
weights S are estimated as

B=HT, ®)

where H' is the Moore-Penrose generalized inverse [30] of the
hidden layer output matrix H. The output weights are calculated in
a single step here. This avoids any lengthy training procedure
where the network parameters are adjusted iteratively with
appropriately chosen control parameters (learning rate, learning
epochs, etc.). The three-step ELM algorithm [27] can be summar-
ized as follows:

ELM Algorithm. Given a training set N={(Xy,t;)X;eR",
t, e [R™, k=1,...,N}, activation function g(x) and hidden nodes N,

Step 1: Randomly assign hidden node parameters
(Wi,b,'), lI],,N

Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate the output weight 8 : #=H'T.

where H, f, and T are defined as Formulas (6) and (7).
2.2. Minimum norm least squares (LS) solution of SLFNs

It is very interesting that, unlike the most common under-
standing that all the parameters of SLFNs need to be adjusted, the
input weights w; and the hidden layer biases b; are in fact not
necessarily tuned and the hidden layer output matrix H can
actually remain unchanged once random values have been
assigned to these parameters in the beginning of learning. For
fixed input weights w; and the hidden layer biases b;, seen in Eq.
(9), to train an SLEN is simply equivalent to finding a least squares
solution f of the linear system Hf =T

(IH(W,, ~~~,WN,B1, ~~~,BN)B*T||
= min |[HW;, ..., Wy, by, ..., by)B—T]|)

wibifp

IHW, ..., Wg, by,bg)f =T

:mﬂinllH(wl,...,WN,b1,...,bN)ﬁ—TII. (10)

If the number N of hid~den nodes is equal to the number N of
distinct training samples, N = N, matrix H is square and invertible
when the input weight vectors w; and the hidden biases b; are

Download English Version:

https://daneshyari.com/en/article/408133

Download Persian Version:

https://daneshyari.com/article/408133

Daneshyari.com

https://daneshyari.com/en/article/408133
https://daneshyari.com/article/408133
https://daneshyari.com

