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a b s t r a c t

This paper investigates the construction of linear-in-the-parameters (LITP) models for multi-output
regression problems. Most existing stepwise forward algorithms choose the regressor terms one by one,
each time maximizing the model error reduction ratio. The drawback is that such procedures cannot
guarantee a sparse model, especially under highly noisy learning conditions. The main objective of this
paper is to improve the sparsity and generalization capability of a model for multi-output regression
problems, while reducing the computational complexity. This is achieved by proposing a novel multi-
output two-stage locally regularized model construction (MTLRMC) method using the extreme learning
machine (ELM). In this new algorithm, the nonlinear parameters in each term, such as the width of the
Gaussian function and the power of a polynomial term, are firstly determined by the ELM. An initial
multi-output LITP model is then generated according to the termination criteria in the first stage. The
significance of each selected regressor is checked and the insignificant ones are replaced at the second
stage. The proposed method can produce an optimized compact model by using the regularized
parameters. Further, to reduce the computational complexity, a proper regression context is used to
allow fast implementation of the proposed method. Simulation results confirm the effectiveness of the
proposed technique.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The modeling and identification of multi-input multi-output
(MIMO) dynamic systems have been used in many industrial
applications [1,2]. A conventional approach is to identify a multi-
input single-output model for each output separately and then
combine every individual model to produce a final MIMO model
[2]. However, if there are common or correlated parameters for
different output variables, then performing identification on all
outputs simultaneously may lead to better and more robust models.

Some research has been reported on the simultaneous identi-
fication of the MIMO systems. For example, multi-innovation
stochastic gradient [3] and hierarchical least squares algorithms
[4] have been proposed for multi-output systems. Gradient-based
and least-squares-based iterative estimation algorithms for MIMO
systems have also been proposed [5]. Integrating support vector
regression and annealing dynamical learning algorithm, a robust
approach was developed to optimize a radial basis function (RBF)
network for the identification of MIMO systems [1].

A popular alternative approach is to formulate the modeling of
MIMO systems as a linear-in-the-parameters (LITP) problem (e.g.,

support vector machine (SVM) model [1] or RBF neural model [6]),
for which some well-known solutions can be applied. For a LITP
model, its performance critically depends upon the determination
of the nonlinear parameters in each model term, such as the width
of a Gaussian function or the fractional power of a polynomial
term. A conventional strategy is to randomly select some input
data points as the RBF centers [7], which may unfortunately
produce a network with poor performance. To tackle this, cluster-
ing techniques have been introduced for the center location [8]. In
contrast to such traditional computational intelligence techniques,
the extreme learning machine (ELM) has been proposed in [9–11].
It applies random computational nodes in the hidden layer that do
not need to be tuned. The hidden layer thus has the fixed
parameters, allowing the output weights to be solved using the
least-squares.

There are some well-known methods for the identification of
LITP models. These include the popular forward orthogonal least
squares (OLS) [12] and the fast forward recursive algorithm (FRA),
which are used to select candidate terms (regressors) based on
their contributions to maximizing the model error reduction ratio,
and for RBF neural networks, all the training samples are usually
used in generating the candidate terms. The OLS algorithm has
also been extended for selecting the centers for multi-output
RBF neural networks [13]. Further, recursive OLS algorithm is
also employed to select the centers for multi-output RBF neural
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networks [6]. Unlike OLS that uses QR decomposition on the
regression matrix, the recently FRA [14,15] proposes a regression
context based on which fast selection of the model structure and
fast estimation of model parameters are achievable. It has been
shown that FRA requires much less computational effort and is
also numerically more stable than some of the alternatives. The
FRA method has been further extended to construct multi-output
RBF neural model [16].

The above forward selection methods only provide an efficient
pathway for the identification of MIMO systems. However, these
methods do not consider how to control the model complexity. In
general, a model with too many parameters will tend to overfit the
training set and therefore fail to generalize to the test set. Conversely,
a model with too few parameters will underfit the training data and
hence achieve poor predictive power on both the training data and
the test set. Ideally, a sparse learner balances model complexity
against training set size, with the goal of balancing between under-
and over-fitting. The benefits of the resulting sparse model include
improved generalization capability and robustness to new test data
and greater efficiency [17,18]. The regularization approach [19–21] is a
useful technique to enforce the sparsity of MIMO model and to
overcome the over-fitting problem. However, the regularization
parameters have to be tuned to obtain satisfactory performance
[22]. According to the Bayesian learning theory [19,20], a regulariza-
tion parameter is equivalent to the ratio of the related hyperpara-
meter to a noise parameter. Compared with traditional regularization
methods, the Bayesian approach provides a rigorous framework for
automatic adjustment of the regularization parameters to their near-
optimal values. This is achieved by marginalizing the hyperpara-
meters when making inferences, and no validation data set is needed.
The Bayesian evidence procedure has also been incorporated into
multi-output OLS (MOLS) [24].

In this paper, the extreme learning machine and regularized
technique are introduced into the recently proposed two-stage
stepwise selection algorithm [15], leading to a novel multi-output
two-stage locally regularized model construction (MTLRMC) method.
In this new algorithm, the nonlinear parameters in each term, such as
the width of the Gaussian function and the power of a polynomial
term, are firstly determined by the ELM. An initial multi-output LITP
model is generated according to the termination criteria in the first
stage. The significance of each selected regressor is then checked and
the insignificant ones are replaced at the second stage. The proposed
method can produce an optimized compact model by the regulariza-
tion parameters. Further, to reduce the computational complexity, a
proper regression context is defined which allows fast implementa-
tion of the proposed method.

The paper is organized as follows. Section 2 gives some prelimin-
aries on multi-output linear-in-the-parameters model, determining
the centers and widths using the ELM and the parameter estimation
of multi-output linear-in-the-parameters models. Section 3 presents
the proposed multi-output two-stage locally regularized model con-
struction method, including the net error reduction to the regularized
cost function, stage 1—forward model selection, stage 2—backward
model refinement, complete algorithm, and computational complex-
ity analysis. Simulation results are presented in Section 4, followed by
the concluding remarks in Section 5.

2. Preliminaries

2.1. Multi-output linear-in-the-parameters model

Consider a discrete-time multivariable nonlinear system with
m inputs and g outputs:

yiðtÞ ¼ f ðy1ðt�1Þ;…; y1ðt�n1
y Þ;…; ygðt�1Þ;…; ygðt�ng

yÞ;…;

u1ðt�1Þ;…;u1ðt�n1
uÞ;…;umðt�1Þ;…;umðt�nm

u ÞÞ ¼ f ðxðtÞÞ; ð1Þ
where yiðtÞ; i¼ 1;…; g and ujðtÞ; j¼ 1;…;m are the system output
and input; ni

y and nj
u are the corresponding maximal lags of the ith

output and jth input, respectively; xðtÞ ¼ ½y1ðt�1Þ;…;umðt�nm
u Þ�T

is model “input” vector; f ð�Þ is some unknown nonlinear function,
g andm are the number of system outputs and inputs, respectively.

Suppose a multi-output linear-in-the-parameters (LITP) model
is used to represent (1) such that

yiðtÞ ¼ ŷiðtÞþɛiðtÞ ¼ ∑
M

j ¼ 1
θj;iφjðxðtÞÞþɛiðtÞ; i¼ 1;…; g; ð2Þ

where θj;i are the model weights, ɛiðtÞ is the error between yiðtÞ
and the ith model output ŷiðtÞ and fɛiðtÞg is assumed to be a white
sequence, M is the number of basis functions, φjð�Þ is a known
nonlinear basis function, such as Gaussian, polynomial or B-spline
functions, and so on. If a Gaussian kernel function
ϕðx; cj; sjÞ ¼ expð� Jx�cj J=s2j Þ is used, then (2) can be re-written
as

yiðtÞ ¼ ∑
M

j ¼ 1
θj;iφjðJxðtÞ�cj J ; sjÞþɛiðtÞ; i¼ 1;…; g: ð3Þ

Suppose N data samples fxðtÞ;YðtÞgNt ¼ 1 are used for model
identification, (3) can be re-written in matrix form as

Y ¼ΦΘþΞ; ð4Þ
where Y ¼ ½y1; y2;…; yg �ARN�g with column vectors yi ¼
½yið1Þ; yið2Þ;…; yiðNÞ�T , i¼ 1;2;…; g; Φ¼ ½ϕ1;ϕ2;…;ϕM �ARN�M

with column vectors ϕi ¼ ½ϕiðJxð1Þ�ci J ; siÞ;…;ϕiðJxðNÞ�
ci J ; siÞ�T , i¼ 1;2;…;M; Θ¼ ½θ1;…;θg�ARM�g with column vectors
θi ¼ ½θ1;i;…;θM;i�T , i¼ 1;…; g; Ξ ¼ ½ɛ1;…; ɛg�ARN�g with column
vectors ɛi ¼ ½ɛið1Þ;…; ɛiðNÞ�T , i¼ 1;…; g.

2.2. Determining the centers and widths using the ELM

It is noted that each Gaussian basis function in (3) contains two
adjustable parameters, the center cj and the width sj. The suitable
parameters can help to improve the modeling performance.
Compared to the conventional conjugate gradient and exhaustive
search methods [25], the extreme learning machine (ELM) [9–11]
assigns random values to these parameters and is claimed to
produce better generalization performance at a much faster
learning speed and with least human intervene. Here, the ELM
approach is employed to determine these parameters. It should be
noted that the idea of choosing arbitrary data samples as the
centers of candidate RBF hidden node have been proposed early in
[26]. The ELM further extended the idea by assigning randomly
values to the nonlinear parameters, and Huang et al. [10] further
provided a theoretic framework to justify the efficacy of such
approaches.

The ELM [9–11] works for the generalized single-hidden layer
feedforward networks (SLFNs). The essence of the ELM is that the
nonlinear parameters in the hidden layer of SLFNs need not be
tuned. From the interpolation capability point of view, it has been
proved that if the activation function (i.e., nonlinear basis function)
φjð�Þ is infinitely differentiable in any interval, the hidden layer
parameters (i.e., cj, sj) can be randomly generated. The corre-
sponding theorem is as follows.

Theorem 1 (Huang et al. [10]). Given any small positive value ɛ40
and activation function φð�Þ g : R-R which is infinitely differentiable
in any interval, and N arbitrary distinct sample ðxðtÞ; yðtÞÞARm �Rg,
there exists MrN such that for any fcj; sjgMj ¼ 1 randomly generated
from any intervals of Rm �R, according to any continuous prob-
ability distribution, then with probability one, the regression matrix
Φ is invertible and JΦW�Y Joɛ.
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