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a b s t r a c t

In this paper, a novel recognition scheme is proposed for identifying the aircrafts of different types based
on multiple modular neural network classifiers. Three moment invariants including Hu moments,
Zernike moments and Wavelet moments are extracted from the characteristics exhibited by aircrafts and
used as the input variables of each modular neural network respectively. Each modular neural network
consists of multiple single-hidden layer feedforward networks which are trained using the extreme
learning machine and different clustering data subsets. A clustering and selection method is used to get
the classification rate of each modular neural network and then based on their weighted sum the final
classification output is obtained. The proposed recognition scheme is finally evaluated by recognizing
six different types of aircraft models and the simulation results show the superiority of the proposed
method compared with the single ELM classifier and other classification algorithms.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, an aircraft was recognized with the use of manual
binoculars on the basis of their engine sound and shapes [1].
But the complex backgrounds where an aircraft flies limit the
effectiveness of the manual techniques. A lot of research studies
has been motivated by the need for automatically identifying
aircraft types in air traffic control, as well as in military applica-
tions [2–5]. The general goal of automatic aircraft recognition is to
analyze the images of a given scene and to identify the potential
targets from the given scene. In the automatic aircraft recognition,
the silhouette and boundary of an aircraft has been widely
exploited by extracting certain features representing the image.
The utilization of good features plays a key role in the aircraft
recognition. The features should be independent of the object's
position and orientation and should contain enough information
to uniquely recognize one object from another. But in reality,
the geometric distortion of the aircraft including shift, scale and
rotation is often met and thus the image patterns have to be able
to be extracted regardless of its geometric distortion.

Moments and functions of moments have been utilized as
pattern features in the aircraft recognition. Such features capture
global or local information about the image and do not require
closed boundaries as boundary-based methods such as Fourier
descriptors. Hu has derived a set of moment functions with the

desired property of invariance under image translation and
rotation, which have been applied by many researchers in auto-
matic aircraft identification [2,3]. In [4], Wavelet moment has been
used for feature extraction of the aircraft in the infrared image
where the global and local features are extracted by using different
scaling and shifting factors. The experiment results show that the
recognition efficiency with Wavelet-moment invariants is better
than that with Hu-moment. Although Hu moment and Wavelet
moment are effective in the aircraft recognition, their individual
discrimination abilities are limited. In [5], the different shape
characteristics of an aircraft are extracted using the four methods
including binary map, contours, Zernike moments, and Wavelet
coefficients. For recognition, these different features are integrated
together into a large feature vector by assigning a set of proper
weights on features. Experimental results have shown that the
recognition results with integrated features are better than those
using the individual features extracted from one of the above four
methods. Although the integrated features show the superior
performance, they require a large amount of computation and
storage capability due to the high dimensionality of the integrated
feature vector.

After the features are extracted, they are input to a designed
classifier to decide a label for the underlying image. In [6], on the
basis of the Hu-moment features, two distinct classifiers including
a Bayes decision rule and a distance-weighted k-nearest-neighbor
rule are used in classification experiments. The nearest-neighbor
distance algorithm is utilized for classifying the aircraft with the
multiple features in [5]. Although the Bayes decision method is
characterized by a well-defined sense of optimality, it requires

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

0925-2312/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.neucom.2012.12.064

n Corresponding author. Tel.: þ86 2982 664 543.
E-mail address: hjrong@mail.xjtu.edu.cn (H.-J. Rong).

Neurocomputing 128 (2014) 166–174

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2012.12.064
http://dx.doi.org/10.1016/j.neucom.2012.12.064
http://dx.doi.org/10.1016/j.neucom.2012.12.064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.064&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.064&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2012.12.064&domain=pdf
mailto:hjrong@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2012.12.064


a priori information concerning the statistics of the observation. The
nearest neighbor algorithm only considers partial measurement
information. Neural networks can learn to classify from labeled
training data without requiring the knowledge of statistical models
and thus are attractive alternative in the aircraft recognition. In [7],
the multiple-layer feedforward neural networks are used for the
radar target classification and the results indicate that neural net-
works can achieve similar performance compared with decision-
theoretic classification techniques which require either nearest
neighbor prototypes or complete statistical models. A three-layer
neural network is also presented to recognize the aircraft types in [8].
In the two methods, the learning abilities of neural networks are
guaranteed based on the back-propagation algorithm that is widely
used in many neural-network applications. However the back-
propagation method faces some trivial issues such as learning
parameters (learning epochs, learning rate, etc.), stopping criteria,
and/or local minima.

Recently, a new fast neural learning algorithm referred to as
Extreme Learning Machine (ELM) with any hidden nodes has been
developed for Single-Hidden Layer Feedforward Networks (SLFNs) in
[9,10]. In ELM, the hidden nodes need not be adjusted during
training. All the parameters of hidden nodes could randomly be
generated according to any given continuous probability distribution
without any prior knowledge of the target function. The output
weights of the network are analytically determined using simple
generalized inverse operation of the hidden layer output matrices.
The ELM algorithm not only possesses better computational effi-
ciency in terms of the learning speed and generalization capability
compared with the back-propagation algorithm but also avoids the
difficulties faced by the back-propagation method [10,11]. ELM has
been successfully applied in many real world applications [12–16].

The primary objective of the present investigation is to study
the use of ELM for the aircraft recognition. In the paper a
hierarchial modular ELM recognition scheme is proposed for
recognizing the aircraft types. In order to improve the accuracy
of aircraft recognition, three features derived from Hu moment,
Wavelet moment and Zernike moment respectively are used in the
proposed scheme. Different from [5], the three individual features
need not be combined together to form a feature vector and are
used to perform a module recognition task. In each module, the
task is further decomposed by dividing the training dataset into
several independent subsets using the clustering method. Then
ELM is used to learn each subset and classify the aircraft types. The
classification result of each module is first obtained according to
a clustering and decision decision method and then the final
classification result is achieved based on the weighted sum of each
module's classification rate for the unknown patterns where the
classification rate of each module got in the validation process is
used as the weight factor. The proposed scheme is evaluated
on a group of six aircraft models of different types and the
simulation results verify its superior performance in terms of
recognition accuracy, computation speed and robustness in recog-
nizing aircrafts.

This paper is organized as follows. Section 2 reviews the feature
extraction methods together with the feature selection process.
In Section 3, the design procedure of the proposed recognition
scheme is introduced together with the ELM algorithm and
modular ELM classifier. Section 4 shows the simulation results
from the recognition of six different types of aircrafts. Section 5
presents the conclusions from this study.

2. Feature extraction

Moments can describe the geometrical features of different
objects and thus have been widely used in pattern recognition

applications. In the paper, three features from Hu moments [17],
Zernike moments [17] and Wavelet moments [18] are extracted
to represent different characteristics of aircrafts so that a high
recognition accuracy can be obtained based on the integration
of their discrimination abilities. The following will give a simple
description about each moment method.

2.1. Hu moment

For a 2D image with the density distribution function f ðx; yÞ, the
geometric moment of (pþq) order is defined as

mpq ¼∬ xpyqf ðx; yÞ dx dy ð1Þ

where p, q are non-negative integers, xpyq is a standard power
basis, f ðx; yÞ is the gray value of the image at x and y location.

Invariance to translation can be achieved simply by shifting the
polynomial basis into the object centroid. When the centroid of
the image is ðxc; ycÞ, the central geometric moment is defined as

μpq ¼∬ ðx�xcÞpðy�ycÞqf ðx; yÞ dx dy ð2Þ

where xc ¼m10=m00 and yc ¼m01=m00 are the gravity center of the
image. m00 is an area of the object for binary images. m10 and m01

are one-order geometric moments. It is noted that μ10 ¼ μ01 ¼ 0
and μ00 ¼m00 always hold.

Scaling invariance is obtained by proper normalization of each
moment. Since low-order moments are more stable to noise and
easier to calculate, the moment is normalized most often by a
proper power of μ00, which is given by

νpq ¼
μpq

μw
00

ð3Þ

where νpq is the normalized central geometric moment,
w¼ ðpþqÞ=2þ1.

Hu has derived a set of seven moments invariant to translation,
scale change and rotation using the low-order, second- and third-
order normalized central moments. They are given as

ϕ1 ¼ ν20þν02

ϕ2 ¼ ðν20�ν02Þ2þ4ν211

ϕ3 ¼ ðν30�3ν12Þ2þð3ν21�ν03Þ2

ϕ4 ¼ ðν30þν12Þ2þðν21þν03Þ2

ϕ5 ¼ ðν30�3ν12Þðν30þν12Þððν30þν12Þ2�3ðν21þν03Þ2Þ
þð3ν21�ν03Þðν21þν03Þð3ðν30þν12Þ2�ðν21þν03Þ2Þ

ϕ6 ¼ ðν20�ν02Þððν30þν12Þ2�ðν21þν03Þ2Þþ4ν11ðν30þν12Þðν21þν03Þ

ϕ7 ¼ ð3ν12�ν03Þðν30þν12Þððν30þν12Þ2�3ðν21þν03Þ2Þ
�ðν30�3ν21Þðν21þν03Þð3ðν30þν12Þ2�ðν21þν03Þ2Þ ð4Þ

where ν20 and ν02 are the second-order normalized central moments.
ν30, ν03, ν21 and ν12 are the third-order normalized central
moments.

2.2. Zernike moment

Zernike moment is one of the orthogonal moments and
constructed based on the Zernike polynomials orthogonal on a
unit circle. A Zernike basis polynomial with p order and q
repetition is given by

Vpqðx; yÞ ¼ RpqðrÞejpθ ð5Þ
where p is a non-negative integer, jqjrp and p�jqj is even. ðr;θÞ
are the polar coordinates of Cartesian coordinates satisfying
r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
and θ¼ arctanðy=xÞ. ejpθ is an angular part of the
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