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The reconstruction of defect profiles based on ultrasonic guided waves means the acquisition of defect
profiles and parameters from ultrasonic guided wave inspection signals, and it is the key for the inversion
of ultrasonic guided waves. A method for the reconstruction of 2-D profiles based on kernelized extreme
learning machine (ELM) is presented, and quantum genetic algorithm (QGA) is adopted to optimize the
cost parameter C and kernel parameter y of kernelized ELM. The input data sets of kernelized ELM are
defect echo signals, and the output data sets are 2-D profile parameters. The mapping from defect echo
signals to 2-D profiles is established. The sample database is achieved by practical experiments and
numerical simulations. Then, 2-D profile reconstruction of artificial defects in ultrasonic guided wave
testing is implemented with QGA-kernelized ELM. To compare the generalization performance and
reconstruction results, another reconstruction model based on LS-SVM is designed simultaneously with
the same kernel. Finally, experimental results indicate that proposed method possesses faster speed,
lower computational complexity and better generalization performance, and it is a feasible and effective

approach to reconstruct 2-D defect profiles.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Pipelines are the most important facilities of the gas, oil and
chemical industries. With the extension of the service time of the
industrial pipelines, the damage caused by corrosion, external
force or pipe material defects makes the pipeline security situation
gradually deteriorated. Hence, nondestructive testing and evalua-
tion has become an important approach to reduce losses and save
inspection time. A number of different inspection technologies are
available to inspect defected pipelines, ranging from magnetic flux
leakage (MFL) to conventional ultrasonic waves [1-3]. For large
and long facilities, conventional ultrasonic tests and evaluations
are time-consuming works because each part of facilities needs to
be scanned by placing huge number of transducers. Ultrasonic
guided wave testing, propagating along a pipeline, has become a
powerful technology for solving this issue. Ultrasonic guided
waves can produce stresses throughout the entire thickness of
the pipe, which means it is possible to detect surface and internal
defects.

The reconstruction of defect profiles based on ultrasonic guided
waves means acquiring defect parameters and rebuilding the defect
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profiles from reflected signals, and it is the key for the inversion
problem of ultrasonic guided wave testing. Issues on how to locate
the position of the defect on the axial and circumferential direction
are discussed in [4]. Simulation results in [5] show that the arrival
time and magnitude of damage-reflected wave packet change
regularly with the increasing of damage depth or thickness. Split
spectrum processing algorithm is used in ultrasonic guided wave-
based damage identification [6]. The former researches on defect
reconstruction are mainly based on the guided wave prediction
theory, and they can detect the defects situating on the axial
direction and the circumferential direction. However, they are
incapable of achieving axial width and radial depth of defects.
Artificial neural network is well-known for its remarkable learning
ability, excellent linear and non-linear mapping ability, the better
generalization performance and lots of successful applications.
Therefore, this paper intends to accomplish 2-D defect profile
reconstruction by using neural networks.

Support vector machine (SVM) has demonstrated good perfor-
mance on classification problems and regression problems [7-9].
Least square support vector machine (LS-SVM) [9,10] uses equality
optimization constraints instead of inequality optimization con-
straints in original SVM, which can be solved by least square
methods instead of quadratic programming.

Extreme learning machine [11,12] was originally proposed as
the training algorithm single-hidden layer feedforward networks
(SLFNs), and then extended to the “generalized” SLFNs where the
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hidden nodes non-neuron alike [13,14]. In ELM, the hidden neuron
parameters are randomly chosen without tuning, and the output
weights are determined by calculating Moore-Penrose (MP) gen-
eralized inverse. Actually, in the view of optimization, ELM is
consistent with SVM and has milder optimization constrains [15].
Compared to SVM, ELM requires fewer optimization constraints
and results in simpler implementation, faster learning speed, and
better generalization performance [15]. Recently, in [16], Huang
et al. proposed a kernelized ELM and found that kernelized ELM
actually simplifies the implementation of LS-SVM. Frénay et al.
[17] applied the kernelized ELM to non-linear support vector
regression (SVR). Zhong et al. [18] compared the kernelized ELM
with LS-SVM on face recognition applications, and found that
kernelized ELM achieves better recognition accuracy with much
easier implementation and faster training speed.

Considering so many advantages of kernelized ELM, this paper
presents a new method to reconstruct 2-D defect profile from
ultrasonic guided wave signals based on kernelized ELM. Practical
experiments and numerical simulations on propagation of L(0,2)
guided wave are conducted to build the sample database for
profile reconstruction. And then, the mapping from the defect
echo signals to 2-D defect profiles is established. In the imple-
mentation of the proposed method, quantum genetic algorithm
(QGA) is adopted to optimize the cost parameter C and kernel
parameter y of kernelized ELM. To compare the generalization
performance and reconstruction results, a LS-SVM network is
trained with the same kernel at the same time. In the last section,
the experimental results indicate that proposed method possesses
fast speed, better generalization performance and lower computa-
tional complexity, and the proposed method is a feasible and
effective approach for defect profile reconstruction.

2. Least square support vector machine (LS-SVM) for function
estimation

Support vector machine (SVM) [7] is a machine learning system
based on statistical learning theory. With the introduction of the
epsilon-insensitive loss function, SVM has been extended to
solve regression problems [8]. Least square support vector
machine (LS-SVM) [9] proposed by Suykens and Vandewalle is
an extension of the conventional SVM. LS-SVM provides equality
optimization constraints instead of inequalities in the conven-
tional SVM and achieves a least square solution by avoiding
quadratic programming. Hence, the algorithm has excellent gen-
eralization performance and low computational cost in many
applications [10].

A training dataset of N points D = {(x;,¥;)|li=1,2,3---N.} with
input data x; € R" and output data y; € R" is given. In primal weight
space, the following optimization problem is formulated as:

minj(@, &) = Sl + 3¢ 3 &2 1
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Subject to the constraints:
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where ¢(-): R"—R™ is the feature function mapping the input
space to a usually high dimensional feature space, weight vector
o e R™ in primal weight space, error variable & e R, bias term b
and C the cost parameter. The solution is obtained after construct-
ing the Lagrange
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where a; € R is Lagrange multiplier. Based on the Karush-Kuhn-
Tucker theorem [19], the solution is given by the following set of

linear equations:
b 0
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where y=1[y1,¥2.Y3, Yy, 1.=[1,1,1,---,1], and a=[ay,a2,a3,
--,an]. And according to Mercer's condition [20], there exists a
mapping ¢(-) and a kernel K(-, -) such that
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This finally results into the following LS-SVM model for function
estimation

N
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where « and b are the solutions to Eq. (4). K(-, ) represents the
high dimensional feature spaces that are nonlinearly mapped from
the input space x. The LS-SVM approximates the function using
Eq (5), and the popular Gaussian function is used as the kernel
function

K(x,x;) = exp(—y|x—xil?), (7

where y is a positive real value.

Note that in the case of Gaussian kernels, the cost parameter C
in Eq. (1) and the kernel parameter y in Eq. (7) should be chosen
carefully.

3. Kernelized extreme learning machine (kernelized ELM)

Extreme learning machine (ELM) is a novel learning scheme
for single hidden layer feedforward neural networks (SLFNs)
[11,12,21-23]. In ELM, the output weights between the hidden
layer and the output layer are directly calculated by using Moore-
Penrose generalized inverse, while the input weights (connecting
the input layer to the hidden layer) and hidden biases can be
randomly chosen. In [13,14], ELM was extended to the generalized
SLFNs where the hidden layer may not be neuron alike. Eq. (8) is
the output of ELM for generalized SLFNs.

L
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where f=[p,5,,-p;]"is the vector of the output weights, and
h(x) = [h1(x), ha(x), ---hy(x)]" is the feature mapping vector that
maps the input space to the hidden layer feature space H.

With the minimal norm least square method, the best output
weights matrix is achieved [11,12]:

p=H'T, )

where H' [24,25] is the Moore-Penrose generalized inverse of
matrix H, and H is the hidden layer output matrix. As can be seen
in [26], the ridge regression theory shows that a positive value can
be added to the diagonal of H'H or HH', and the resultant solution
is more stable and tends to have better generalization perfor-
mance. Eq. (8) can be rewritten as

-1
fx)=heH" (é + HHT) T. (10)

According to [16,18], if a feature mapping h(x) is unknown to users,
a kernel matrix for ELM can be defined as follows:

Qe =HH" : Qg = hx) - h(x)) = K(x; - X;). an
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