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This paper describes the neural controller design for the longitudinal dynamics of a generic hypersonic
flight vehicle (HFV). The dynamics are transformed into the strict-feedback form. Considering the
uncertainty, the neural controller is constructed based on the single-hidden layer feedforward network
(SLFN). The hidden node parameters are modified using extreme learning machine (ELM) by assigning
random values. Instead of using online sequential learning algorithm (OSLA), the output weight is
updated based on the Lyapunov synthesis approach to guarantee the stability of closed-loop system. By
estimating the bound of output weight vector, a novel back-stepping design is presented where less
online parameters are required to be tuned. The simulation study is presented to show the effectiveness
of the proposed control approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hypersonic flight vehicles may offer a reliable and more cost
efficient way to access space by reducing flight time. Also quick
response and global attack became possible. Hypersonic flight
control is challenging since the longitudinal model of the
dynamics is known to be unstable, non-minimum phase with
respect to the regulated output, and affected by significant model
uncertainty. The main difficulty of the control law design for the
hypersonic aircraft is due to the high complexity of the motion
equations and there is little knowledge of the aerodynamic
parameters of the vehicle.

Recently adaptive control and robust control are popularly
studied on hypersonic flight controller design [1]. Back-stepping
design [2] is an explicit tool for systematic nonlinear design. The
HFV dynamics are written in the linearly parameterized form [3]
and then robust adaptive dynamic inversion with back-stepping
arguments is conducted. Dynamic surface control with control
inputs saturation design is studied in [4].

Intelligent control is one important aspect for hypersonic flight
control since it is with the capability of uncertainty approxi-
mation [5-7,22]. Since modern aircrafts are equipped with digital
computers, the controller should be designed in discrete-time form
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[8]. Controller on the basis of continuous system is usually imple-
mented by a digital computer with a certain sampling interval [9].
There are two methods for designing the digital controller. One
method, called emulation, designs a controller with the continuous-
time system, and then discretizes the controller. The other is to
design the controllers directly based on the discrete system. In
contrast to the emulation method, the discrete controller is designed
in a discrete domain so that the performance of the controller
may not depend on the sampling rate and the upper bounds of the
neural network (NN) weight update rates guaranteeing the conver-
gence can be estimated analytically while emulation method is
otherwise [10].

Focused on discrete time design, the adaptive NN back-stepping
HFV control [11] is studied to deal with the system uncertainty. The
Kriging based adaptive controller is designed in [12] where the
uncertainty is described as the realization of the Gaussian random
functions [13]. The simulation shows the effectiveness of the con-
troller design [11,14]. In the above schemes, the structure of NN is
determined according to some prior information regarding the
system to be approximated. Then the stable adaptive laws can be
generated in a linear fashion. However in practice, systems are time-
varying and the prior information is difficult to obtain. In this case,
the exact values for the NN are hard to determine.

In this paper, a new stable neural control scheme is presented.
The SLFN with RBF nodes is used as the function approximator to
estimate the unknown nonlinearity. Different from the existing
methods, the parameters of SLFN are adjusted based on the ELM.
ELM has attracted widespread concern in recent years [15-17]
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since it overcomes some challenges faced by other techniques [18]
such as (1) slow learning speed, (2) trivial human intervene, and/
or (3) poor computational scalability. ELM works for generalized
SLEN. The essence of ELM is that the hidden layer of SLFN needs
not to be tuned. Compared with those traditional computational
intelligence techniques, ELM provides better generalization per-
formance at a much faster learning speed and with least human
intervene. In [19], an approach for performing regression on large
data sets in reasonable time is proposed using an ensemble of
ELMs and the experiments show that competitive performance is
obtained on the regression tasks. In [20], the ELM is utilized to
train the controller by randomly assigning the parameters of
hidden nodes. The output weights are synthesized using a Lyapu-
nov function for guaranteeing the stability of the closed-loop
system. Also it is indicated that original ELM cannot follow its
reference trajectory well since the original ELM lacks stability
proof of the whole control system and thus the convergence of the
tracking error cannot be satisfied.

In this paper, considering the use of digital computer, the back-
stepping controller is designed with ELM by randomly assigning
the parameters of hidden nodes. The updating law is designed
with Lyapunov synthesis approach in discrete-time. Following the
functional decomposition [11], we design the controller separately
for the subsystems. Furthermore, the “minimal learning para-
meter” technique based on bound estimation of weight vector
[14,21] is incorporated to reduce the computation burden. In this
paper, only the cruise trajectories are considered for the control
problem in this paper and we does not consider the ascent or the
reentry of the vehicle.

This paper is organized as follows. Section 2 describes the
longitudinal dynamics of a generic hypersonic flight vehicle. The
strict-feedback form is formulated and the discrete analysis model
is obtained in Section 3. SLFN based on ELM is illustrated in
Section 4. Section 5 presents the adaptive controller design based
on ELM. The weight bound estimation based controller is designed
in Section 6. The simulation result is included in Section 7. Section
8 presents several comments and final remarks.

2. Hypersonic air vehicle model

The model of the longitudinal dynamics of a generic hypersonic
aircraft in [1] is considered. This model is composed of five state
variables X =[V,h,a,7,q]" and two control inputs U =[5, @]
where V is the velocity, y is the flight path angle, h is the altitude,
a is the attack angle, g is the pitch rate, &, is the elevator deflection
and @ is the throttle setting.

The dynamics of hypersonic aircraft are described by the
following nonlinear equations:

_Tcosa—D psiny

v m r2 M

h=V sin y )

. L+Tsina (u—-V*rcosy

V= mv - Vrz (3)

a=q-y 4)

. M

q="7" ®)
%

where T, D, L and M,,, represent thrust, drag, lift-force and pitching
moment respectively, m, I, and p represent the mass of aircraft,
moment of inertia about pitch axis and gravity constant. r is the
radial distance from center of the earth.

Refer to Appendix A for more information about the model.

3. System transformation
3.1. Strict-feedback formulation

Referred to [11,14], the formulation of the subsystems is
presented in (6) and (8). The related definition of the system is
listed in Appendix B.

The velocity subsystem (1) can be rewritten as follows:

V=Ff,+guy
u, =@
yv:V (6)

The tracking error of the altitude is defined as h = h—h, and
the flight path command is chosen as

—kp(h—hg)—k; [(h—hg) dt+hg

¥4 =arc sin v (7

if k,>0 and k; >0 are chosen and the flight path angle is
controlled to follow yg4, the altitude tracking error is regulated to
zero exponentially [5].

Assumption 1. The thrust term T sin a in (3) is neglected because
it is generally much smaller than L.

Define Xj=[x1,%,%3]", X1 =7, X, =0,, X3=q where 0,=
a+y. Then the strict-feedback form equations of the attitude
subsystem (3)-(5) are written as

X1 =f1(%1)+g1 (x1)x2

Xy =f5(X1,X2) +82(X1,X2)X3

X3 =f3(X1,X2,X3) +g5(X1, X2, X3)Uip

Up =5e

y=xi (8)

Assumption 2. f; and g; are unknown smooth functions. There
exist known constants g; and g, such that g;>g;>g >0,
i=1,3, v B B

Remark 1. From Appendix B, the f; is really complicated and it is
considered to be totally unknown. g(k) is time varying however
according to the parameter perturbation, the bound of gain is easy
to derive with the simple linear expression.

The goal pursued in this study is to design a dynamic controller
d. and @ to steer system altitude and velocity from a given set of
initial values to desired trim conditions with the tracking refer-
ence hy and V. With the command transformation (7), the control
objective of system (8) is to design an adaptive controller, which
makes y—y,, further h—hy; and all the signals involved are
bounded.

3.2. Discrete-time model

By Euler expansion with sample time T, systems (6) and (8)
can be approximated as

V(k+1) = V() +Tslf (k) + &, (uy (k)] ©

X1(k+1) = x1(k)+ Ts[f 1 (k) + g1 (R)x2 (k)]
Xo(k+1) = x2(k) + Ts[f (k) + g2 (k)x3 (k)]
X3(k+1) =x3(k)+Ts[f3(k) +g3(k)ua(k)] (10)

4. SLFN based on ELM

For N arbitrary distinct samples (x;t;), where X;=[X;,
Xiz, ... Xin]" € R" and t;=[ti1, ti2, ..., tim]" € R™, standard SLFN with
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