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a b s t r a c t

In this paper, a single-hidden layer feed-forward neural network (SLFN) is used to model the dynamics of
the vapor compression cycle in refrigeration and air-conditioning systems, based on the extreme learning
machine (ELM). It is shown that the assignment of the random input weights of the SLFN can greatly
reduce the training time, and the regularization based optimization of the output weights of the SLFN
ensures the high accuracy of the modeling of the dynamics of vapor compression cycle and the
robustness of the SLFN against high frequency disturbances. The new SLFN model is tested with the real
experimental data and compared with the ones trained with the back propagation (BP), the support
vector regression (SVR) and the radial basis function neural network (RBF), respectively, with the results
that the high degree of prediction accuracy and strongest robustness against the input disturbances are
achieved.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the function of refrigeration and air-
conditioning systems is to remove heat from one physical location
to another. And it is essential in modern way of life to use these
refrigeration equipments for the preservation of food, human
comfort, the cooling of chemical and industry processes and so
on [1]. In recent years, many engineering techniques have been
employed for modeling vapor compression cycle (VCC) systems.
Neural networks [2,3], due to their excellent performance in
approximating complex nonlinear functions, have been introduced
for modeling and optimizing air conditioning systems. Hosoz and
Ertunc [4] developed a neural network model with five neurons in
input layer for the system states and performance of a refrigera-
tion system with an evaporative condenser. Yilmaz and Atik [5]
proposed a feed-forward neural network with condenser water
flow rate as the input to predict the performance of a variable
cooling capacity mechanical cooling system. Navarro et al. [6]
developed a radiant based function neural network model for
predicting the performance parameters (such as cooling capacity,
power consumption and chiller water outlet temperature) of a
variable speed compression based refrigeration systems.

Recently, a novel learning algorithm for single-hidden-layer feed-
forward neural networks (SLFN), called extreme learning machine
(ELM), has been developed in [7–12] by Huang et al. The main
characteristics of the ELM are that both the input-weights and
hidden biases are randomly chosen, and the output weights are
analytically determined by using the Moore–Penrose (MP) general-
ized inverse [13]. It has been further shown in [14] that ELM achieves
the better generalization performance for equality constrained opti-
mization problems, the extremely fast speed of convergence, and the
easy conversion of complex learning into simple linear fitting. Most
importantly, the ELM avoids many difficulties brought by gradient-
based learning methods such as choosing stopping criteria, learning
rate, learning epochs, local minima, and the over-tuned problems.
ELM has been widely used in various fields due to its excellent speed
and high accuracy. Nizar et al. [15] employed both ELM and online
ELM to analyze the nontechnical loss and extracted customer
behavior patterns with ELM as data mining techniques. Zhan
et al. [16] applied ELM to investigate the relationship between sales
amount and some significant factors which affect demand. The
experiment results show that ELM outperforms back propagation
in accuracy and speed. Kim et al. [17] proposed to use morphology
filter and principle component analysis for feature extraction, and
then used ELM to classify the ECG signal into six beat types,
experiment results prove that its performance is better than that of
BP, RBF and SVM.

In this paper, we will use an SLFN to model the dynamics of a
vapor compression cycle. It will be shown that, with the ELM, the
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input weights are randomly assigned and the output weights are
globally trained with the batch learning type least squares. In
addition to the standard constraint used in the ELM, the constraint
that satisfies the cooling load requirement in a vapor compression
system is included in the global optimization for deriving the
optimal output weights of the SLFN. In the experimental section,
all training data pairs are obtained from the experiments, and the
SLFN model is tested and compared with the ones trained with the
BP, the SVR and the RBF, with the results that the developed SLFN
model behaves with excellent robustness against high frequency
noises involved in the testing data and provides the high accuracy
for the prediction of the system states in the vapor compression
cycle.

2. Introduction to vapor compression cycle

The vapor compression cycle system consists of the four main
components: evaporator, compressor, condenser, and expansion
valve, as shown in Fig. 1.

It is seen that these components are connected in a closed loop
so that the working fluid can be continuously circulated in the
system. The working principle of the vapor compression cycle is
briefly described as follows [18]:

i. Initial temperature T of the liquid refrigerant inside the
evaporator is lower than the temperature Te;air;i of the cold
reservoir, and such a temperature difference makes the heat
transfer from the reservoir to the refrigerant. The refrigerant
will then evaporate after absorbing enough heat.

ii. After entering the compressor, the refrigerant vapor is com-
pressed with high pressure, and such a process has also raised
the refrigerant vapor's temperature.

iii. In the condenser, the heat of the refrigerant vapor is removed
and the refrigerant vapor is condensed to liquid with the lower
temperature.

iv. As soon as passing through the expansion valve, part of the
refrigerant liquid evaporates, as its pressure is immediately
reduced from the condensing pressure Pc to the evaporating
pressure Pe, the heat absorption in evaporation process results
in steep temperature decrease. Then the refrigerant enters the
evaporator for the next cycle.

3. Introduction to ELM

Consider N distinct sample data vector pairs Xi; tið Þ that are
the collected measurements from a vapor compression cycle. The ith
input pattern vector and the desired ith output vector are respectively

defined as Xi ¼ xi1 xi2 … xin
� �T and ti ¼ ti1 ti2 … tim

� �T ,
for i¼ 1;2;…N. The structure of SLFN to be used to learn the given
input and output pairs is shown in Fig. 2 where the nodes in the input
and output layer are linear, and the nodes in hidden layer are with the
nonlinear activation functions, described by

yki ¼ φðWT
kxiÞ ð1Þ

Nomenclatures

A opening percentage
F frequency
H enthalpy
P pressure
Q heat transfer rate
SH superheat
SC subcool
T temperature
_W power consumption
_m mass flow rate
ω compressor rotation speed

Subscripts

c condenser
ca condenser fan
e evaporator
ea evaporator fan
ev expansion valve
i inlet/ith group
in indoor
o outlet/outside
req requirement
t total

Fig. 1. Vapor compression refrigeration cycle. Fig. 2. Single hidden layer feed-forward neural network.
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