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a b s t r a c t

This paper investigates the problem of the dynamic behaviors of a class of complex-valued neural
networks with mixed time delays. Some sufficient conditions for assuring the existence, uniqueness and
exponential stability of the equilibrium point of the system are derived using the vector Lyapunov
function method, homeomorphism mapping lemma and the matrix theory. The obtained results not only
are convenient to check, but also generalize the previously published corresponding results. A numerical
example is used to show the effectiveness of the obtained results.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the last decades there have been some important
researches on the dynamic behaviors of neural networks due to
their widespread applications in the associative memory, signal
processing, pattern recognition, etc. [1,2]. Although numerous
works [3–17] have been published in recent years on the stability
analysis of the equilibrium points of various neural networks, little
attention has been paid to the study on the dynamic behaviors
of complex-valued neural networks. In fact, complex-valued
neural networks (CVNN for short) make it possible to solve some
problems which cannot be solved with their real-valued counter-
parts. For example [18–22], the XOR problem and the detection of
symmetry problem cannot be solved with a single real-valued
neuron, but they can be solved with a single complex-valued
neuron with the orthogonal decision boundaries, which reveals
the potent computational power of complex-valued neurons.
Besides, CVNN has more different and more complicated proper-
ties than the real-valued ones. Therefore it is necessary to study
the dynamic behaviors of the systems deeply.

In the past decades, there have been some researches on the
dynamic behavior analysis of the equilibrium point of various

CVNN. In [23], some sufficient conditions for judging the existence,
uniqueness and global exponential stability of the equilibrium
point of a class of discrete CVNN were obtained. However, time
delays were not considered in the model studied in [23], which
may lead to the instability of the system. In [24] a class of CVNN
with constant delays was studied, and some sufficient conditions
were obtained for assuring the stability of the equilibrium point of
CVNN with two classes of activation functions. Usually, constant
fixed time delays in the models of delayed feedback systems serve
as a good approximation in simple circuits having a small number
of cells. Though consider that the time delays arise frequently in
practical applications, it is difficult to measure them precisely.
In most situations the delays are variable and unbounded. So it is
necessary to study CVNN with mixed time delays.

There have been various approaches for analyzing the dynamic
behaviors of CVNN, such as the scalar Lyapunov function method
[24], the LMI method [25], the energy function method [26,27],
and the synthesis method [28], etc. However, to the best of our
knowledge, the vector Lyapunov function method has not been
used for studying the dynamic behaviors of CVNN so far. The
vector Lyapunov function method has been used to study the
dynamic behaviors of various real-valued neural networks, see
[3,6,12,29]. It is easy to find that the obtained stability conditions
in [3,6,12,29] are explicit and easy to be verified. Moreover, it is
easier to construct vector Lyapunov function than to construct a
scalar Lyapunov function.

Based on the above analysis, the dynamic behaviors of a class
of CVNN with time-varying delays and unbounded delays will be
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studied by using the vector Lyapunov function method in this
paper. Some sufficient conditions for judging the existence, uniq-
ueness and exponential stability of the equilibrium point of the
system are established.

2. Preliminaries

To make reading easier the following notations will be used. Let
C denote complex number set. Let z¼ xþyi be the complex
number, here i denotes the imaginary unit, i.e. i¼

ffiffiffiffiffiffiffiffi
�1

p
. For

complex number vector zACn, let jzj ¼ ðjz1j; jz2j;…; jznjÞT be the

module of the vector z, and jjzjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

k ¼ 1jzkj2
q

be the norm of the

vector z, here ð:ÞT denotes the transpose of vector.
In this paper, consider the complex-valued neural networks

with time-varying delays and unbounded delays, which can be
described by

dzkðtÞ
dt

¼ �dkzkðtÞþ ∑
n

j ¼ 1
½akjf jðzjðtÞÞþbkjf jðzjðt�τkjðtÞÞÞ

þpkj

Z t

�1
θkjðt�sÞf jðzjðsÞÞds�þ Jk ð1Þ

where zkAC represents the state of neuro k, k¼ 1;2;…;n, n is the
number of neuros, A¼ ðakjÞn�nACn�n, B¼ ðbkjÞn�nACn�n and P ¼
ðpkjÞn�nACn�n are the connection weight matrices, J ¼ ðJ1; J2;…; JnÞT
ACn is external constant input vector, f ðzð:ÞÞ ¼ ðf 1ðz1ð:ÞÞ; f 2ðz2ð:ÞÞ;…;

f nðznð:ÞÞÞTrepresents activation function, D¼ diagðd1; d2;…; dnÞ
ARn�n with dk40 is the self-feedback connection weight matrix,
τkjðtÞðk; j¼ 1;2;…;nÞ are bounded functions and τ¼max1rk;jrn

suptZ0τkjðtÞ, θkj: ½0; þ1Þ-½0; þ1Þ are piecewise continuous func-
tions, and satisfyZ þ1

0
eβsθkjðsÞds¼ μkjðβÞ; k; j¼ 1;2;…;n ð2Þ

here μkjðβÞ is continuous on ½0; δÞ, and μkjð0Þ ¼ 1, δ40.
Assume that the initial conditions of Eq. (1) are zkðsÞ ¼ ϕkðsÞ,

here ϕkðsÞ are bounded continuous on ð�1;0�, k¼ 1;2;…;n.
Let zk ¼ xkþ iyk, then activation function f kðzkÞ can be expressed

by separating it into its real part and imaginary part as

f kðzkÞ ¼ f Rk ðxk; ykÞþ if Ikðxk; ykÞ ð3Þ
where f Rk ðxk; ykÞ : R2-R, f Ikðxk; ykÞ : R2-R, k¼ 1;2;…;n.

Furthermore, Eq. (1) can be rewritten by separating it into its
real part and imaginary part as

_xkðtÞ ¼ �dkxkðtÞþ ∑
n

j ¼ 1
½aRkjf Rj ðxjðtÞ; yjðtÞÞ�aIkjf

I
jðxjðtÞ; yjðtÞÞ�

þ ∑
n

j ¼ 1
½bRkjf Rj ðxjðt�τkjðtÞÞ; yjðt�τkjðtÞÞÞ

�bIkjf
I
jðxjðt�τkjðtÞÞ; yjðt�τkjðtÞÞÞ�

þ ∑
n

j ¼ 1

Z t

�1
θkjðt�sÞ½pRkjf Rj ðxjðsÞ; yjðsÞÞ

�pIkjf
I
jðxjðsÞ; yjðsÞÞ�dsþuR

k ð4Þ

_ykðtÞ ¼ �dkykðtÞþ ∑
n

j ¼ 1
½aRkjf IjðxjðtÞ; yjðtÞÞþaIkjf

R
j ðxjðtÞ; yjðtÞÞ�

þ ∑
n

j ¼ 1
½bRkjf Ijðxjðt�τkjðtÞÞ; yjðt�τkjðtÞÞÞ

þbIkjf
R
j ðxjðt�τkjðtÞÞ; yjðt�τkjðtÞÞÞ�

þ ∑
n

j ¼ 1

Z t

�1
θkjðt�sÞ½pRkjf IjðxjðsÞ; yjðsÞÞþpIkjf

R
j ðxjðsÞ; yjðsÞÞ�dsþuI

k

ð5Þ

here k¼ 1;2;…;n, AR ¼ ðaRkjÞn�n and AI ¼ ðaIkjÞn�n are, respectively,

the real part and imaginary part of A, BR ¼ ðbRkjÞn�n and BI ¼ ðbIkjÞn�n

are, respectively, the real part and imaginary part of B, PR ¼ ðpRkjÞn�n

and PI ¼ ðpIkjÞn�n are, respectively, the real part and imaginary part

of P, uR ¼ ðuR
1;u

R
2;…;uR

nÞT and uI ¼ ðuI
1;u

I
2;…;uI

nÞT are, respectively,
the real part and imaginary part of u.

Let z# ¼ ðz#1 ; z#2 ;…; z#n ÞT be the equilibrium point of Eq. (1), here
z#k ¼ x#k þ iy#k , k¼ 1;2;…;n.

Definition 1. The equilibrium point z# of Eq. (1) is exponentially
stable, if there exist constants Γ40 and λ40 such that for every
JACn and tZ0 the inequality jjzðtÞ�z#jjrsupsA ð�1;0�jjϕðsÞ�
z#jjΓe� λt holds.

Assumption 1. It is assumed that f kð:Þ with the form of Eq. (3)
satisfy the following conditions:

(i) The partial derivatives f kð:Þ with respect to xk and yk: ∂f
R
k=∂xk,

∂f Rk=∂yk, ∂f
I
k=∂xk and ∂f Ik=∂yk exist and are continuous;

(ii) The partial derivatives ∂f Rk=∂xk, ∂f
R
k=∂yk, ∂f

I
k=∂xk and ∂f Ik=∂yk

are bounded, i.e. there exist positive constants lRRk , lRIk , lIRk
and lIIk such that j∂f Rk=∂xkjr lRRk , j∂f Rk=∂ykjr lRIk , j∂f Ik=∂xkjr lIRk ,

j∂f Ik=∂ykjr lIIk , then it follows from the mean value theorem
of multivariable functions that for any xk; x′k; yk; y′kAR,
we have

jf Rk ðxk; ykÞ� f Rk ðx′k; y′kÞjr lRRk jxk�x′kjþ lRIk jyk�y′kj
jf Ikðxk; ykÞ� f Ikðx′k; y′kÞjr lIRk jxk�x′kjþ lIIk jyk�y′kj ð6Þ

Let LRR ¼ diagðlRR1 ; lRR2 ;…; lRRn Þ, LRI ¼ diagðlRI1 ; lRI2 ;…; lRIn Þ, LIR ¼ diag
ðlIR1 ; lIR2 ;…; lIRn Þ, and LII ¼ diagðlII1 ; lII2 ;…; lIIn Þ.

Lemma 1 [3]. Let A¼ ðaijÞn�nARn�n be a matrix with akjr0, ðka jÞ.
The following statements are equivalent:

(i) A¼ ðaijÞn�n is a M matrix;
(ii) The real parts of all eigenvalues of A are positive;
(iii) There exists a positive vector ξARn such that Aξ40.

Lemma 2 [3]. If HðαÞ is a continuous function on Rn, and satisfies the
following conditions:

(i) HðαÞ is injective on Rn;
(ii) limjjαjj-1jjHðαÞjj-1;then HðαÞ is a homeomorphism of Rn into

itself.

3. Main results

For simplification, let

x¼ ½x1; x2;…; xn�T ; y¼ ½y1; y2;…; yn�T ; α¼ ½xT ; yT �T ; ω¼ ½ðuRÞT ; ðuIÞT �T ;

~f
RðαÞ ¼ ððf Rðx; yÞÞT ; ðf Rðx; yÞÞT ÞT ; ~f

IðαÞ ¼ ððf Iðx; yÞÞT ; ðf Iðx; yÞÞT ÞT :
Define a map associated with Eqs. (4) and (5) as follows

HðαÞ ¼ � ~DαþQ1
~f
RðαÞþQ2

~f
IðαÞþω; ð7Þ

where

~D ¼ D 0
0 D

� �
; Q1 ¼

ARþBRþPR 0
0 AIþBIþPI

" #
;

Q2 ¼
�AI�BI�PI 0

0 ARþBRþPR

" #
:
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