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a b s t r a c t

In this paper, a neural classifier based on the newly developed local coupled feedforward neural

network, which may improve the convergence of BP learning significantly, is developed. A binary

threshold unit is used as the output node of the classifier. A general error gradient of the output node

is defined for the BP training of the classifier. And a hidden node selection scheme is developed for

the local coupled feedforward neural network. In addition, we derive a result on the ‘‘universal

approximation’’ property of the local coupled feedforward neural network with an arbitrary group of

window functions, which can cover the region of training samples. Simulation results show that the

general error gradient and the hidden node selection scheme work well.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Data classification is a frequently encountered decision making
task of human activity. Many classification techniques have been
proposed, such as: decision tree [15], neural network [11], support
vector machine (SVM) [3], and rule based classifiers systems [5].
A large number of studies have been devoted to empirical compar-
isons between neural and conventional classifiers [4,6,13,14,16,19].
As demonstrated by Zhang in [20], their general conclusion is
that no single classifier is the best for all data sets although the
feedforward neural networks do have good performance over a wide
range of problems. Neural network classifier has been successfully
applied to a variety of real world tasks ([1,2,7–10,12,17,]).

High efficient learning is essential for neural network classifier.
Slow convergence of the Backpropagation (BP) algorithm has
blocked the applications of feedforward neural networks for more
than 20 years. A local coupled feedforward neural network (LCFNN)
has been developed by Sun to treat this problem [18]. In LCFNN, a
window function is added to each hidden node. A hidden node need
only to remember the learning samples located within its window
radium. Therefore, the difficulty of learning tasks for hidden nodes is
determined by the window radium selected by user and is not
influenced by the size of the learning sample set.

In this paper, a neural classifier based on LCFNN is developed.
A binary threshold unit is used as the output node of the classifier.
Traditional BP algorithm cannot be applied in this classifier directly
because the threshold unit is not differentiable. To solve this
problem, a general error gradient of the threshold output node is
developed in Section 3.1. And a hidden node selection scheme is
developed for LCFNN in Section 3.2. In addition, in Section 2, we
derive a result on the ‘‘universal approximation’’ property of the
local coupled feedforward neural network with an arbitrary group of
window functions, which can cover the region of training samples.

2. Local coupled feedforward neural network

The linking architecture of LCFNN is shown in Fig. 1. In LCFNN,
each hidden node is assigned an address in input space, and each
input xARn activates hidden nodes with intensity g(:x�di:), here
diARn is the address of the hidden node. The output of LCFNN
with one output node is:

yðxÞ ¼
X

iAs

Xmi

k ¼ 1

ðaikf ðbikUxþcikÞþpikÞ

 !
gð:x�di:Þ ð1Þ

where s stands for the set of the addresses of hidden nodes, mi is
the number of hidden nodes at the ith hidden node address,
aikAR, cikAR, pikAR, and bikARn are network weights, xARn is an
input vector, yAR is the output, f( � )ACN is a sigmoid function,
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g( � ) is a window function, which observes following conditions:

1. g( � ) is a continuous function.
2. g(0)¼1
3. g( � )¼0 in [r, þN]
4. g( � ) is a monotonic decreasing function in [0,r]

where r40 is the window radium. Obviously, one input only
activates the hidden nodes located in the sphere whose center is
the input point and whose radium is r. The number of hidden
nodes activated by one input can be controlled by adjusting r.

Various norms can be used in g(.). In this study, we use N-
norm for the window function g(.).

Below is a theorem about the ‘‘universal approximation’’
property of LCFNN.

Theorem 1. For an arbitrary continuous function j in a compact

region D and an arbitrary group of n window function centers d1�dn,
which satisfy:

Xn

i ¼ 1

gð:x�di:Þ

 !
40, for all XAD,

there exists a LCFNN, which uses d1�dn as the window function

centers of its hidden nodes and can approximate j in D at any given

accuracy.

Proof. Because the upper bound of g(.) is one, we have:

nZ
Xn

i ¼ 1

gð:x�di:Þ

 !
40 for all XAD

According to the wide recognized ‘‘universal approximation’’

property of multilayer perceptron (MLP), for an arbitrary d40,

there exists a MLP,
Pm

k ¼ 1ðakf ðbkUxþckÞþpkÞ, satisfying:

9
jðxÞPn

i ¼ 1 gð:x�di:
�
Xm
k ¼ 1

ðakf ðbkUxþckÞþpkÞ9o
d
n

for all XAD

Here m is the number of hidden nodes, f(.) is the sigmoid

activation function of hidden nodes. Then multiply the two sides

of the formula with
Pn

i ¼ 1 gð:x�di:Þ,

9
Xn

i ¼ 1

jðxÞPn
i ¼ 1

gð:x�di:

0
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CCCA gð:x�di:Þ�

Xn

i ¼ 1

Xm
k ¼ 1

ðakf ðbkUxþckÞþpkÞ

 !
gð:x�di:Þ

" #
9

2
6664

o
d
n

Xn

i ¼ 1

gð:x�di:ÞÞrd for all xAD

This formula can be transformed into:

9jðxÞ�
Pn

i ¼ 1ð
Pm

k ¼ 1ðakf ðbkUxþckÞþpkÞÞgð:x�di:Þ9od for all

xAD

Then we have the following conclusion:

For an arbitrary d40, there exists a LCFNN,
Pn

i ¼ 1ð
Pm

k ¼ 1

ðakf ðbkUxþckÞþpkÞÞgð:x�di:Þ, satisfying:

9jðxÞ�
Pn

i ¼ 1ð
Pm

k ¼ 1ðakf ðbkUxþckÞþpkÞÞgð:x�di:Þ9od for all

xAD

End of proof.

3. Local coupled feedforward neural; network classifier

3.1. Local coupled feedforward neural; network classifier

The linking architecture of LCFNN classifier is shown in Fig. 2.
The activation function of the output node is.

z¼
1 uZ0

�1 uo0

�
ð2Þ

where u is the input of the output node, z is the output of the
output node. The classification error e is defined as:

e¼ 9z�t9 ð3Þ

where tA{�1, 1} is the known target value of the training sample.
The Traditional BP algorithm cannot be applied in this classi-

fier directly because the threshold unit is not differentiable. The
present solution to this problem is to use a LCFNN to approximate
the classifier. Then put a threshold node behind the LCFNN. The
objection function J for the BP training of the LCFNN is:

J¼
1

2

X
iAs
ðti�f oðuiÞÞ

2
ð4Þ

where s is the set of training samples, ti is the target value of the ith
sample, fo(ui) is the output of the LCFNN for the ith sample, and fo(.)
is the activation function of the output node of the LCFNN.

The network weight updating formula for the BP training is:

w¼w�kU
X
iAs
ðf oðuiÞ�tiÞ

@f oðuiÞ

@ui

@ui

@w
ð5Þ

where w is the vector of the network weights of the LCFNN, k is
the learning rate.

As shown in Fig.3(a), when a sigmoid function is used as fo(.), the
derivatives of fo(.) for those samples, which are classified wrongly
and whose inputs of the output node are far from zero, are near zero
(the shaded region in Fig. 3(a)). The information backpropagation of
these samples are blocked by the sigmoid fo(.). This problem may
cause the BP training to be trapped in local minimum.

A linear fo(.) can solve this problem. However, as shown in
Fig. 3(b), for a linear fo(.), the samples, which are classified correctly
and whose classification margins are larger than one will produce
gradients to reduce their classification margins (the shaded region in
Fig. 3(b)). These requirements for reducing classification margins are
unreasonable for a classifier and will disturb the training of the
classifier.

Fig. 1. Structure of LCFNN.

Fig. 2. Structure of LCFNN classifier.
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