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a b s t r a c t

In this paper, a novel method quantum clustering using kernel entropy component analysis (KECA-QC) is
proposed. This method has two phases: preprocessing and clustering stages. The main idea of pre-
processing is to map the original data to a high-dimensional feature space, and to select the useful
components using Renyi entropy as our similarity metric. After data preprocessing, different clusters will
be distributed more or less in different places, and for high-dimensional datasets, it can achieve the
purpose of dimensionality reduction at the same time. In the second phase, quantum clustering method
is used, which can find clusters of any shape without knowing the number of clusters. Based on the
traditional quantum clustering, we develop a new method estimating the wave function from dis-
tributions of K-nearest neighbors statistics, which can further reduce the running time and improve the
calculation efficiency. In order to evaluate the effectiveness of this method, we compare the proposed
method with k-means clustering (KM), the classical spectral clustering algorithm called Ng–Jordan–
Weiss (NJW), the traditional QC, and kernel entropy component analysis spectral clustering algorithm
(KECA-KM). The experimental results demonstrate that the proposed algorithm outperforms the com-
pared algorithms on synthesized datasets and UCI datasets.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Clustering analysis refers to the process of organizing data into
meaningful homogeneous groups or clusters. Its aim is to get high
similarity among the objects in the same cluster, but dissimilarity
in different clusters. Clustering usually does not need a training
data for learning, which is in an unsupervised classification. It has
been widely used in pattern recognition, data mining and machine
learning. Traditionally, the existing clustering methods can be
divided into partitional, hierarchical, density-based, and model-
based algorithms. Each algorithm has its own advantages and
disadvantages. For example, k-means algorithm [1], one of the
most famous clustering algorithms, can be implemented easily and
efficiently, and have been successfully employed in many practical
applications. However, this algorithm only works well for hyper-
spherical data, or at best hyper-elliptical data. In the existing
clustering algorithms, including k-means algorithm, most parti-
tional approaches require a-priori knowledge about the number of
clusters the data should be grouped into. However, in many cases,
the number of clusters is unknowable. Moreover, the vast majority

of clustering methods have many drawbacks, such as sensitivity to
their initialization and noise and susceptivity to local optima.

Inspired by quantum mechanism in physics, we can solve those
problems mentioned above using quantum theory. Quantum
clustering (QC) [2–4], proposed by David Horn and Assaf Gottlieb,
takes the clustering as a physical system. By solving the Schrö-
dinger equation and using the gradient descent method, the
resulting potential function has the minimums which correspond
to the cluster centers. If the parameters of QC are fixed, it is a
deterministic algorithm and belongs to one of the unsupervised
clustering algorithms based on partition. Many experiments show
that QC can produce satisfactory results even when some tradi-
tional clustering algorithms fail.

Nasios et al. concluded that the potential field is assimilated
with the data density [5,6]. So they used the K-nearest neighbors
statistical distribution for estimating the scale parameter, and
detected the final modes by combining the local Hessian with a
region growing algorithm. Li et al. improved the QC algorithm and
proposed the distance-based QC [7] and parameter-estimated QC
[8], to overcome the defect of the traditional QC, that is, the
measured distance between two samples is relatively fixed and
the kernel scale parameter is often needed to be estimated by
experiments many times. Subsequently, Zhang et al. substituted
the exponent measuring distance for Euclidean distance to
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measure the distance between data points and the cluster centers
[9], which improved the iterative procedure of QC algorithm and
performed better than the Euclidean distance in data preproces-
sing. Gou et al. made a combination of quantum clustering and
multi-elitist immune algorithm [10,11] to avoid getting stuck in
local extremes the and solve the computational bottleneck. In
addition, quantum clustering combination with other methods can
be applied to many different areas. In Refs. [8] and [11], the
improved quantum clustering algorithms are applied for the
topography segmentation from SAR images of terrain and medical
images segmentation respectively. Niu et al. detected the com-
munity structure in complex networks based on quantum
mechanics [12]. Sun et al. applied quantum clustering to the
research of fuzzy neural network model [13]. Di Buccio et al. dis-
tilled relevant documents by means of dynamic quantum clus-
tering [14].

In this paper, we introduce a new quantum clustering using
kernel entropy component analysis [15,16]. Firstly, we use kernel
entropy component analysis as a data preprocessing stage, which is
to map the original data to a high-dimensional feature space and to
select the useful components substituting original data. It is proved
that all the information contained in the distribution of the data can
be utilized by using entropy as our metric. Our approach is capable of
finding clusters of any shape, without knowing the real number of
clusters beforehand. The clustering results of datasets especially
high-dimensional data are obviously improved after data pre-
processing. In addition, quantum clustering may take a long period of
time to execute. So in order to reduce the running time and improve
the calculation efficiency, the distributions of K-nearest neighbors
statistics are used for calculating the wave function of each quantum
physics particle. Meanwhile, the introduction of local information
can help improve the quantum clustering accuracy.

The rest part of this paper is organized as follows. In the next
section, the quantum clustering algorithm is described. Section 3
gives the details of the proposed data preprocessing, KECA, and
then the improved quantum clustering with K-nearest neighbors
is described. Section 4 provides the experimental results and dis-
cussions about our algorithm. The conclusions of this study are
drawn in the last part of this paper.

2. Related work – quantum clustering algorithm

Quantum mechanics describes the distribution of particles in
quantum space, and clustering analysis detects the structure of
samples in scale space. In this case, we can observe the similarity
between data points and quantum particles. The study of quantum
physicists found that the distribution of microscopic particles in
the energy field is influenced by their potential energy. When the
spatial distribution and evolution shrink down to a one-
dimensional infinite square potential well, the particles always
tend to gather together at low potential values [17]. In other
words, potential function is equivalent to an abstract source, and
there are more particles distributed in the potential well when the
data potential function reaches minimum. Thus, quantum
mechanics with this process can be used to solve clustering pro-
blems. Particles in the same cluster will eventually be placed in the
same potential well but different wells for particles belonging to
different cluster. There is corresponding relation between particles
and data points, and we can convert the data clustering problem
into a quantum clustering issues.

Quantum clustering algorithm [2–4] proposed by Horn is a novel
clustering method that is based on physical intuition derived from
quantum mechanics. The state of a quantum mechanics system is
completely specified by the wave function [6]. According to the
theory of quantum mechanics, the evolution of quantum states

follows the Schrödinger equation. The Stationary Schrödinger equa-
tion can be represented as

Hψ ¼ �σ2

2
∇2þV pð Þ

� �
ψ ¼ Eψ ð1Þ

where ψ pð Þ is the wave function, V pð Þ is the potential function,
H is the Hamilton operator, E is the energy eigenvalue of H, ∇ is the
Laplacian operator, and σ represents the adjustable scale
parameter.

From above we can conclude that particles have the same
distribution state if they are at the same potential. If the wave
function ψ pð Þ is given, the potential function V pð Þ can be worked
out with the Schrödinger equation. The minima of V pð Þ can be
associated with cluster centers. The process above provides the
basis for quantum clustering.

Such a wave function ψ pð Þ can be estimated with the Gaussian
kernel-based sum.

ψ pð Þ ¼
XN
i ¼ 1

e� jj p�pi jj 2=2σ2 ð2Þ

In total, there are N quantum particles in quantum space and pi

is one of them. Working out the Eq. (1) with the given ψ pð Þ, we can
get the general expression of potential function as

V pð Þ ¼ Eþ σ2=2
� �

∇2ψ
ψ

¼ E�d
2
þ 1
2σ2ψ

X
i

jjp�pi jj 2exp �‖p�pi‖2

2σ2

� �

ð3Þ
where d is the lowest possible eigenvalue of H, which is the

dimension of data points [18]. For E is still left undefined, we
require V to be nonnegative, i.e. min V ¼ 0. E can be approximated
by

E¼ � min
σ2=2
� �

∇2ψ
ψ

ð4Þ

Refs. [2,3] use the gradient descent algorithm to find the
quantum potential minima as the cluster centers. The iterative
formula is as following:

yi tþΔt
� �¼ yi tð Þ�η tð Þ∇V yi tð Þ

� � ð5Þ
where yi 0ð Þ ¼ pi is the initial data, η tð Þ is the iteration speed and

∇V is the gradient of potential function. Eventually, data point yi
reaches a fixed value which is consistent to the cluster center. And
some nearest data points should be classified into the same class.

It follows therefore that, the potential function is the cost
function in QC. The location of the cluster centers in the clustering
process depends on the potential structures of the data, but need
not define the geometric centers or random data points as our
cluster centers.

3. Quantum clustering using kernel entropy component ana-
lysis (KECA-QC)

3.1. Kernel entropy component analysis

In this subsection, the kernel entropy component analysis will
be introduced. Then the performance of kernel principal compo-
nent analysis (KPCA) [19,20] and singular value decomposition
(SVD) [2,3], which are also widely used preprocessing methods,
will be shown. And the comparison and discussion will be made
with these three methods.

In 2006, from the view of information theory, Jenssen et al.
combined Renyi entropy [15] with the kernel method and pro-
posed a novel method called kernel entropy component analysis
(KECA). It is able to retain the main information of data structure
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