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a b s t r a c t

Deep neural networks have recently shown impressive performance in several machine learning tasks.
An important approach to training deep networks, useful especially when labeled data is scarce, relies on
unsupervised pretraining of hidden layers followed by supervised finetuning. One of the most widely
used approaches to unsupervised pretraining is to train each layer with the Contrastive Divergence (CD)
algorithm. In this work we present a modification to CD with the goal of learning more diverse sets of
features in hidden layers. In particular, we extend the CD learning rule to penalize cosines of the angles
between weight vectors, which in turn encourages orthogonality between the learned features. We
demonstrate experimentally that this extension to CD improves performance of pretrained deep net-
works on image recognition and document retrieval tasks.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

For years neural networks have been attracting attention of
researchers in both academia and industry. The main appeal of these
models was the prospect of learning multiple layers of data features.
Yet, for a long time training deep neural networks was unsuccessful
and simpler machine learning algorithms, like support vector
machines [1], were more useful in many practical applications.
However, research advances from the last decade led to a resurgence
of interest in neural networks. A key concept that contributed to this
renaissance is training the networks in two phases, namely unsu-
pervised pretraining and supervised finetuning. The first significant
work in this direction was presented in [2], where Deep Belief Net-
works (DBNs), i.e., stacked Restricted BoltzmannMachines [3] (RBMs),
were trained layer-by-layer in an unsupervised manner and then
finetuned with error backpropagation [4]. The resultant deep models
significantly outperformed state-of-the-art approaches on multiple
machine learning tasks [5,2].

In recent years several methods have been proposed that improve
the performance of networks with no pretraining. Most notably,
these include dropout [6] and Hessian-free optimization [7]. Results
reported in these two works show, however, that dropout and
Hessian-free method also benefit from unsupervised pretraining,
which further reduces the generalization error. This agrees with

observation in [8] that unsupervised pretraining usually improves
network performance. Another justification for unsupervised pre-
training stems from the unbalance between available unlabeled and
labeled data: data acquisition is relatively inexpensive compared to
labeling. Therefore, unsupervised pretraining can typically incorpo-
rate much bigger training sets than supervised finetuning.

The aim of the work presented in this article is to improve pre-
training of deep neural networks. Specifically, we propose an
improved method for pretraining such networks with RBMs.
Restricted Boltzmann Machine models the joint probability distribu-
tion of training observations and their latent features. These latent
features are detected by weight vectors of neurons in the hidden
layer. Ideally, each neuron in the hidden layer should represent a
distinct latent feature. Otherwise, the effective number of the latent
features decreases and, in effect, the hidden layer becomes less
expressive. Our goal is therefore to explicitly encourage more diver-
sity in latent features. To this end, we modify the Contrastive Diver-
gence (CD) algorithm [9], i.e., the most widely used training method
for RBMs, in a way that penalizes parallel components of the weight
vectors. This extension to CD encourages the model to learn more
orthogonal weight vectors. We show experimentally that the mod-
ified CD improves the performance of pretrained deep networks on
image recognition and document retrieval task.

2. Related work

While significant effort has been recently put into improving
the training of deep neural networks, relatively little attention has
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been given to methods that encourage orthogonality of features
learned by the hidden layers. To the best of our knowledge, explicit
orthogonalization of weight vectors has thus far been applied in
the context of shallow non-pretrained networks and for pre-
training local receptive fields in convolutional neural networks.

Specifically, in [10] authors introduced an additional penalty
term to the squared error cost function in backpropagation net-
works, forcing the weight vectors to fulfill the orthonormality
constraint. They tested the proposed method on regression and
prediction tasks and demonstrated an improvement in the gen-
eralization error. However, networks used therein are small by the
current standards—authors employed the resilient back-
propagation algorithm to train two-layer networks with between
2 and 10 units in a hidden layer. Another work where orthogo-
nalization was used in small networks was presented in [11]. Note
that both these works impose an orthogonality (or orthonorm-
ality) constraint not in CD but during error backpropagation.

More recently, in [12] authors applied local weights orthogo-
nalization during unsupervised pretraining of tiled convolutional
neural networks. Specifically, orthogonalization was employed
with topographic independent component analysis and sig-
nificantly improved the accuracy on two popular image classifi-
cation benchmarks, namely NORB and CIFAR-10 datasets.

Another related work was presented in [13]. This article pro-
poses a replacement for the CD gradient, with the goal of improving
the stability of RBM training. While the proposed gradient does not
include explicit orthogonalization of weight vectors, results show
that it leads to more orthogonal hidden features than classical CD.
However, in experimental evaluation RBM was used only as a one
layer feature extractor and no results were reported for deep net-
works pretrained with the proposed gradient.

Unlike the above studies, in this paper we focus on pretrained
non-convolutional deep neural networks. In particular, we inves-
tigate orthogonalization of weight vectors during unsupervised
pretraining of multilayer perceptron networks and deep
autoencoders.

3. Encouraging orthogonality between weight vectors in
Restricted Boltzmann Machines

Restricted Boltzmann Machine is a generative neural network
with neurons arranged in two layers that form a bipartite graph.
Visible layer v models observations and hidden layer h models
their latent features. As described in [14], the weights wij define an
energy function Eðv;hÞ over configurations of visible and hidden
units. The energy then translates into the joint probability Pðv;hÞ
of visible and hidden states:

P v;hð Þ ¼ e�E v;hð Þ

Z
; ð1Þ

where Z is the partition function:

Z ¼
X
v;h

e�E v;hð Þ: ð2Þ

The goal of the training is to fit the weights so that the marginal
distribution PðvÞ approximates the distribution of observations.
The training gradient for the weight wij is then given by [9]:

∇ij ¼ 〈vihj〉data� 〈vihj〉RBM ; ð3Þ
where 〈vihj〉data is the expected product of visible and hidden
activations when RBM observes a training example and 〈vihj〉RBM is
their expected product under the joint distribution Pðv;hÞ given by
the current model parameters. While computation of the first of
these terms is straightforward, the second term is intractable. The
gradient is therefore approximated, typically with the Contrastive

Divergence [9] algorithm. In CD the rule for updating the weights
is

ΔW¼ εðvTh�vTRhRÞ; ð4Þ
where ε is the learning rate, v is the training example and h is its
corresponding hidden activation vector. Activations vR and hR are
constructed by performing Gibbs sampling of visible and hidden
layer, starting the chain from h. When pretraining deep networks
usually only one Gibbs step is performed, which is the so called
CD-1 algorithm [9].

Columns of the weight matrix W represent latent features
learned by the neurons in the hidden layer. Our goal is to learn a
broad set of features in the hidden layer, and therefore we
encourage weight vectors to be orthogonal to each other (Fig. 1).
Let wk denote the k-th column of W, i.e., the k-th latent feature.
We encourage orthogonality between latent features by introdu-
cing an additional term to the weight update rule, which penalizes
parallel components of the weight vectors. Specifically, in an
update to a weight vector wk we penalize 1

n�1

P
jakokjwj, where okj

is a coefficient that reflects the degree of non-orthogonality
between wk and wj, and n is the number of hidden units. Thus,
our weight update rule takes the form:

ΔW¼ ε vTh�vTRhR�
λ

n�1
WO

� �
; ð5Þ

where we construct matrix O to reflect the non-orthogonality of
weight vectors and introduce λ as the non-orthogonality cost. The
non-orthogonality cost should apply only to pairs of different
weight vectors, so we set the main diagonal of O to zeros. For the
off-diagonal elements we initially considered three types of non-
orthogonality coefficients oij, namely cosine of the angle between
weight vectors:

oij ¼
wi �wj

Jwi J Jwj J
; ia j; ð6Þ

classical Gram–Schmidt orthogonalization:

oij ¼
wi �wj

wi �wi
; ia j; ð7Þ

and the dot product between weight vectors:

oij ¼wi �wj; ia j: ð8Þ
However, of the three approaches presented above, penalizing
cosine of the angle between weight vectors Eq. (6) consistently
yielded better results in validation experiments than the other two
approaches (see Section 4).

Orthogonalization of RBM weight vectors is not explicitly
connected to modeling the probability distribution of observa-
tions. However, it is not unusual to include additional regulariza-
tion terms in RBMs when they are used to initialize deep net-
works: a good example is the sparsity penalty introduced in [15] to
improve discriminative performance of pretrained deep networks.

Fig. 1. Encouraging orthogonality between weight vectors in an RBM layer. Green
and red connections correspond to weight vectors of the i-th and j-th latent feature,
respectively. The goal of the orthogonalization procedure is to increase the ortho-
gonality between all pairs of weight vectors. To this end, we penalize the cosines of
the angles between weight vectors: cos θij (Eqs. (5), (6)). (For color version of this
figure the reader is referred to the online version of this paper.)
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