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a b s t r a c t

This paper presents a new neural network for solving l1-norm problems with equality and box con-
straints by introducing a new vector. The proposed model is proved to be Lyapunov stable and converges
to an exact optimal solution of the original problem for every starting point. Compared with some
existing continuous-time neural networks, the proposed model has the fewest neurons and a low
complexity. The simulation results show the validity and transient behavior of the proposed model.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider l1-norm problem:

min JxJ1
s:t: Dx¼ d; lrxrh;

(
ð1Þ

where x¼ ðx1; x2;…; xnÞT ARn is the decision vector, DARm�n, dARm,
l;hARnðlrhÞ, and J � J1 denotes l1-norm, i.e., JxJ1 ¼

Pn
i ¼ 1 jxi j .

l1-norm optimization problem has many important applications
in scientific and engineering fields including image restoration,
signal processing, parameter estimation, blind source separation,
system identification, time-frequency, time-delay estimation and so
on (see [2,24,26,40] and the references therein). Due to the sparsity
properties of the solution, l1-norm optimization problem has been
extensively studied (see [1,2,4,22,24–27,31,33,36]). In many engi-
neering applications, (1) is usually desired to solve in real time. But
traditional methods (see [5–7,9–12] and the references therein)
cannot satisfy real-time requirement because the computing time
for a solution is greatly dependent on the dimension and structure
of the problem, and the complexity of the algorithm used [18]. On
the contrary, neural network models can be implemented by VLSI
and optical technologies, where the computational procedure is
truly distributed and in parallel. Thus they are more competent for
real-time applications than traditional numerical algorithms.

Since the milestone articles [7,8] were published, many neural
networks for solving optimization problems have been developed
(see [13–36,39,41–46]). Among them, models in [39,41,45,44] for
constrained optimization problems can be applied to solve (1) and
require n state variables, but they are discontinuous. The model in
[41] includes a penalty parameter and needs to compute the converse
of some matrix. By means of the optimization conditions, Wang et al.
[26] proposed a neural network to the problem (1) without box
constraints, i.e., h¼ � l¼ þ1. Even though this model has a good
stability performance, it is hard to solve the problem (1) directly since
the box constraints cannot be converted into linear equality con-
straints. Furthermore, using the idea in [26], Wang and Peterson [27]
proposed a model to solve constrained least absolute deviation pro-
blems. However, the resulting model for the problem (1) requires 2
mþ4n state variables, and it could not guarantee the convergence to
an optimal solution (see [24] and Example 1 in Section 3). Because the
problem (1) can be formulated as a linear variational inequality pro-
blem (see [24] and Lemma 1 in Section 2), models in
[13,14,16,18,24,30] can be applied to it, but each resulting model
requires mþ2n state variables, and the stability of models in
[14,16,18,30] cannot be guaranteed (see [17,24]). Moreover, even
though the problem (1) can also be transformed into a minimax
problem (see [26]), the model in [17] could not be used to the pro-
blem (1) since it is only designed to solve convex quadratic minimax
problems without linear equation constraints. On the other hand,
models in [24,31,32] can solve least absolute deviation problems and
have a good stability, yet the model in [32] can be only used to solve
the problem (1) without equality constraints, and the size of each
model in [24] and [31] is mþ2n. Same as its continuous-time version
in [31], a discrete-time neural network in [36] also requires mþ2n
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state variables. Thus, it is necessary for us to construct a new model
for (1) with the fewest neurons and a good stability.

Based on the above analysis, we present a new neural network
for (1) by introducing a new vector in this paper. The new model is
proved to be Lyapunov stable, and can approach an exact optimal
solution of (1) for any starting point. In contrast to existing models
for the problem (1), the proposed model has the fewest state
variables and a low complexity. The performance of the presented
model is shown by three numerical simulation examples.

Throughout this paper, we assume that (1) has an optimal
solution xn, and satisfies the Slater condition [1], i.e., there is a
point xARn such that Dx ¼ d and lioxiohi for i¼ 1;2;…;n. The
projection operator PU on a closed convex set U � Rn is defined as

PUðuÞ ¼ argmin
vAU

Ju�vJ ;

where JuJ ¼ ðPn
i ¼ 1 u

2
i Þ1=2, and a basic property for it [4,19] is

½v�PUðvÞ�T ½PUðvÞ�w�Z0; 8vARn;wAU: ð2Þ
A neural network is said to be Lyapunov stable and globally asymp-
totically stable if the corresponding dynamical system is so [34].

The rest of this paper is organized as follows. Section 2 con-
structs a neural network to (1) and analyzes its stability and
convergence. Numerical simulations and conclusion are found in
Sections 3–4, respectively.

2. Model and stability

This section will build a model for (1) and analyze its stability.

2.1. Proposed model

To design a new model, we first prove the following results.

Lemma 1. xn is an optimal solution of (1) if and only if there exists a
ðμn; snÞARm � Rn such that

xn ¼ PΩ1
ðxnþDTμn�snÞ

sn ¼ PΩ2
ðsnþxnÞ; Dxn ¼ d;

(
ð3Þ

where Ω1 ¼ ½l;h� and Ω2 ¼ fxARn j �1rxir1; i¼ 1;2;…;ng.

Proof. Obviously, (1) can be transformed into

min JyJ1
s:t: Dx¼ d; y¼ x; xAΩ1;

(
ð4Þ

and the Lagrange function for the above problem is

Lðx; y;μ; sÞ ¼ JyJ1�μT ðDx�dÞ�sT ð y�xÞ;
which is defined on Γ ¼Ω1 � Rn � Rm � Rn. From the saddle point
theorem in [2], ðxn; ynÞAR2n is an optimal solution of (4) if and only
if there is a ð μn; snÞARmþn such that ðxn; yn;μn; snÞ is a saddle point
of Lðx; y;μ; sÞ on Γ, i.e.,

Lðxn; yn;μ; sÞrLðxn; yn;μn; snÞrLðx; y;μn; snÞ; 8ðx; y;μ; sÞAΓ: ð5Þ
From the first inequality of (5), we have

ðμ�μnÞT ðDxn�dÞþðs�snÞT ðyn�xnÞZ0; 8ð μ; sÞARmþn:

Then yn ¼ xn and Dxn ¼ d. From the second inequality of (5), we get

JyJ1� Jyn J1�ðsnÞT ðy�ynÞþðx�xnÞT ðsn�DTμnÞZ0;

for all ðx; yÞAΩ1 � Rn. Thus

JyJ1Z Jyn J1þðsnÞT ð y�ynÞ; 8yARn;

ðx�xnÞT ðsn�DTμnÞZ0; 8xAΩ1:

(

So, snA∂Jyn J1, and xn ¼ PΩ1
ðxnþDTμn�snÞ by (2). Since Jyn J1 ¼Pn

i ¼ 1 jyn

i j and

∂jyn

i j
¼ 1; if yn

i 40
A ½�1;1�; if yn

i ¼ 0
¼ �1; if yn

i o0;

8><
>:

for i¼ 1;…;n, sn ¼ PΩ2
ðsnþynÞ by snA∂Jyn J1. Therefore (3)

holds true.□

From Lemma 1, we know that the optimal solution of the problem
(1) can be gotten by solving (3). Let un ¼ snþxn, then sn ¼ PΩ2

ðunÞ,
xn ¼ un�PΩ2

ðunÞ, and we can obtain the following systems:

un�PΩ2
ðunÞ ¼ PΩ1

½un�2PΩ2
ðunÞþDTμn�

D½un�PΩ2
ðunÞ� ¼ d;

(
ð6Þ

from (3). Clearly, double projections are made on the right-hand-side
of the first equality of (6), i.e., first projection onto Ω2 and then onto
Ω1. Moreover, the below lemma reveals the relationship between
solutions of (1) and (6).

Lemma 2. Let Kn ¼ fz¼ ðuT ;μT ÞT ARmþn j z solves (6)}. Then two
statements are true.

(i) If x is an optimal solution of (1), then there is a zARmþn such
that zAKn with x¼ u�PΩ2

ðuÞ.
(ii) If zAKn, then u�PΩ2

ðuÞ is an optimal solution of (1).

Proof. Obviously (i) holds by the above analysis.
(ii) Let x¼ u�PΩ2

ðuÞ, then PΩ2
ðuÞ ¼ PΩ2

½xþPΩ2
ðuÞ�, Dx¼ d and

x¼ PΩ1
½x�PΩ2

ðuÞþDTμ� by (6), i.e., a pair ðx; PΩ2
ðuÞ;μÞ is a solution

of (3). Thus x¼ u�PΩ2
ðuÞ is an optimal solution of (1) by Lemma 1.□

From Lemma 2, each optimal solution of (1) can be obtained by
solving (6), and vice versa. Let z¼ ðuT ;μT ÞT , then a neural network
to solve (1) can be defined as follows:

� State equation

dz
dt

¼ d
dt

u

μ

 !
¼ �ρ

x�PΩ1
ð2x�uþDTμÞ

DPΩ1
ð2x�uþDTμÞ�d

0
@

1
A ð7Þ

� Output equation

x¼ u�PΩ2
ðuÞ; ð8Þ

where ρ40 is a scaling constant.
Obviously, Kn defined in Lemma 2 is the equilibrium point set

of the proposed neural network (7), and two operators PΩ1
ð�Þ and

PΩ2
ð�Þ could be easily implemented by using piecewise-activation

functions [15]. One can see that the circuit realizing (7)–(8)
includes mþn integrators, 2mn connection weights, mþn activa-
tion functions for PΩ1

ð�Þ and PΩ2
ð�Þ, some amplifiers and adders.

Thus (7)–(8) can be implemented in simple hardware units [19].

2.2. Model comparisons

This subsection shows the advantages of the proposed model
(7)–(8) by comparing it with four existing models.

First, let us focus on two models in [24], whose state equations
for (1) can be formulated as

d
dt

x
y

z

0
B@

1
CA¼ �ρ

x�PΩ1
ðx�yþDTzÞ

2½y�PΩ2
ðyþPΩ1

ðx�yþDTzÞÞ�
2½DPΩ1

ðx�yþDTzÞ�d�

0
BB@

1
CCA ð9Þ
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