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a b s t r a c t

Conjugate gradient methods have many advantages in real numerical experiments, such as fast

convergence and low memory requirements. This paper considers a class of conjugate gradient learning

methods for backpropagation neural networks with three layers. We propose a new learning algorithm

for almost cyclic learning of neural networks based on PRP conjugate gradient method. We then

establish the deterministic convergence properties for three different learning modes, i.e., batch mode,

cyclic and almost cyclic learning. The two deterministic convergence properties are weak and strong

convergence that indicate that the gradient of the error function goes to zero and the weight sequence

goes to a fixed point, respectively. It is shown that the deterministic convergence results are based on

different learning modes and dependent on different selection strategies of learning rate. Illustrative

numerical examples are given to support the theoretical analysis.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The feedforward neural networks with backpropagation (BP)
training procedure have been widely used in various fields of
scientific research and engineering applications. The BP algorithm
attempts to minimize the least squared error of objective func-
tion, defined by the differences between the actual network
outputs and the desired outputs [1]. There are two popular ways
of learning with training samples to implement the backpropaga-
tion algorithm: batch mode and incremental mode [2]. For batch
training, weight changes are accumulated over an entire presen-
tation of the training samples before being applied, while incre-
mental training updates weights after the presentation of each
training sample [3].

There are three incremental learning strategies according to
the order that the samples are applied [2,4–6]. The first strategy is
online learning (completely stochastic order). The second strategy
is almost cyclic learning (special stochastic order) with each
sample from the training set submitted once per cycle and with
sample sequence fixed for each cycle. The last one is cyclic
learning (fixed order).

In most cases, the feedforward neural networks are trained with
supervised learning techniques which employ the steepest descent
method [7,8]. We mention that the steepest descent method takes

consecutive steps in the direction of negative gradient of the perfor-
mance surface. There has been considerable research on the methods
to accelerate the convergence of the steepest descent method [9,10].
Unfortunately, in practice, even with these modifications, the method
exhibits oscillatory behavior when it encounters steep valleys, thus, it
is not effective due to slow progress. An important reason for this is
that the steepest descent method is a simple first order gradient
descent method with poor convergence properties.

There have been a number of reports describing the use of
second order numerical optimization methods to accelerate the
convergence of backpropagation algorithm, such as conjugate
gradient method (CG) and Newton method [8,11]. Newton
method is much faster than the steepest descent method, but
requires the Hessian matrix and its inverse to be calculated. The
CG method is a kind of compromise algorithm; it does not require
the calculation of second derivatives, and yet it still has the
quadratic convergence property [12].

In general, conjugate gradient methods are much more effective
than the steepest descent method and are almost as simple to
compute. These methods do not attain the fast convergence rates of
Newton or quasi-Newton methods, but they have the advantage of
not requiring storage of matrices [13]. The linear conjugate gradient
method was first proposed in [14] as an iterative method for solving
linear systems with positive definite coefficient matrices. The first
nonlinear conjugate gradient method was introduced in [15]. It is
one of the earliest and most popular techniques for solving large
scale nonlinear optimization problems. Different conjugate gradient
methods have been proposed in recent years which depend on the
different choices of the descent directions [16,17]. There are three
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classical CG methods such as FR [15], PRP [18,19] and HS [14]
conjugate gradient methods. Among these methods, the PRP method
is often regarded as the best one in practical computations [20].

The batch mode is commonly used for the PRP method in
feedforward neural networks [21]. The cyclic learning for PRP
method was first presented in [22]. The learning rate is adjusted
automatically providing relatively fast convergence at early stages
of adaptation while ensuring small final misadjustment for cases
of stationary environments. For non-stationary environments, the
cyclic learning method proposed in [22] has good tracking ability
and quick adaptation to abrupt changes, as well as, to produce a
small steady state misadjustment.

In [23], a novel algorithm is proposed for blind source separation
based on the cyclic PRP conjugate gradient method. The line search
method is applied to find the best learning rate. Simulations
show the ability of the algorithm to perform the separation even
with an ill-conditioned mixed matrix. To our best knowledge, the
almost cyclic learning for the PRP method has not been discussed
until now.

Convergence property for neural networks is an interesting
research topic which offers an effective guarantee in practical
applications. However, it is noted that there are other effective
methods to train neural networks. A novel recurrent neural
network based on the gradient method is proposed for solving
linear programming problems in [24,25]. The finite time conver-
gence is guaranteed by using the Lyapunov method. Furthermore,
the network with simple structure converges globally to exact
optimal solutions. As reported in [26], the extreme learning
machine (ELM) algorithm based on the least-squares is more
effective than gradient-based learning for feedforward neural
networks in many applications [27,28]. An essential theoretical
result in [26] is that single-hidden layer feedforward neural
networks (SLFNs) with N hidden nodes can learn N distinct
samples exactly and may require less than N hidden nodes if
learning error is allowed. The convergence property of SLFNs
based on ELM algorithm is beyond the scope of this paper and is
left for future investigation. In this paper, we just focus on the
convergence property of feedforward neural networks based on
conjugate gradient methods.

The convergence results for feedforward neural networks pub-
lished in the literature mainly concentrate on the steepest descent
method. Some weak and strong convergence results based on
batch mode training process are proven with special assumptions
in the recent paper [29]. The convergence results for online
learning are mostly asymptotic convergence due to the arbitrari-
ness in the presentation order of the training samples [30–33]. On
the other hand, deterministic convergence lies in cyclic and almost
cyclic learning mainly because every sample of the training set is
fed exactly once in each training epoch [4–6,34,35].

In this paper, we present a novel study of the deterministic
convergence of BP neural networks based on PRP method,
including both weak and strong convergence. The weak conver-
gence indicates that the gradient of the error function goes to
zero, while the weight sequence itself goes to a unique fixed point
for the strong convergence. We obtain the convergence conditions
with a constant learning rate for batch mode, and a more general
choice instead of line search for cyclic and almost cyclic learning.
Specially, we demonstrate the following novel contributions:

(A) The almost cyclic learning of PRP conjugate gradient method
is presented in this paper:

The almost cyclic learning is common for BP neural networks by
employing the steepest descent method [35]. However, there is
no report for almost cyclic learning BP neural networks based
on PRP conjugate gradient method. We claim that the order of

samples can be randomly arranged after each training cycle for
almost cyclic PRP learning method.

(B) The deterministic convergence of batch mode conjugate
gradient (BCG) is obtained which includes the strong conver-
gence, that is, weight sequence goes to a fixed point:

For BCG method, we consider the case of a constant learning rate
rule. The weak convergence for general nonlinear optimization
problems is proved in [16]. However, we extend the convergence
result including the strong convergence result as well in this
paper. Xu et al. [29] prove the weak and strong convergence based
on batch mode learning of steepest descent method for three
complex-valued recurrent neural networks. We claim that the
assumptions of the activation functions and the stationary points
of error function in this paper are more relaxed than those in [29].
In addition, it is easy to extend the convergence results to the
complex-valued recurrent neural networks. We mention that the
BCG method would become the steepest descent method once
the conjugate coefficients are set to zero.

(C) The deterministic convergence including weak convergence
and strong convergence of cyclic conjugate gradient (CCG) for
feedforward neural networks are obtained for the first time:

The PRP conjugate gradient method has no global convergence in
many situations. Some modified PRP conjugate gradient methods
with global convergence were proposed [36–39] via adding some
strong assumptions or using complicated line searches. To our
best knowledge, the deterministic convergence results in this
paper are novel for CCG and ACCG (almost cyclic conjugate
gradient) for feedforward neural networks. We note that cyclic
learning with steepest descent method is a special case of CCG
presented below. A dynamic learning strategy which depends on
the instant conjugate direction is considered in [22]. However,
from mathematical point of view, presented below is a more
general case for learning rate instead of line search strategy.

(D) The above deterministic convergence results are also valid
for ACCG.

Similarly, almost cyclic learning for steepest descent method is a
special case of ACCG once the conjugate coefficients are set to
zero in this paper. The convergence assumptions of ACCG for
feedforward neural networks are more relaxed than those in [35].

The rest of this paper is organized as follows: In Section 2,
three updating methods including BCG, CCG and ACCG are
introduced. The main convergence results are presented in
Section 3 and their proofs are in Section 5. Conclusions are drawn
in Section 6.

2. Algorithms

2.1. Conjugate gradient methods

Consider an unconstrained minimization problem

min f ðxÞ, xARn, ð1Þ

where Rn denotes an n-dimensional Euclidean space and f :

Rn-R1 is a continuously differentiable function.
Generally, a line search method takes the form

xkþ1 ¼ xkþakdk, k¼ 0,1, . . . , ð2Þ

where dk is a descent direction of f ðxÞ at xk and ak is a step size.
For convenience, we denote rf ðxkÞ by gk, f ðxkÞ by fk and r2f ðxkÞ
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