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a b s t r a c t

In this paper, the stability problem is investigated for Hopfield neural networks (HNNs) perturbed by
Poisson noises. Note that Poisson process can better reflect the dynamical behaviors of jump stochastic
noises which exist widely in neurons. A stability criterion for HNNs perturbed by Poisson noises is
presented by employing a combination of the martingale theory and measure theory. Finally, a simu-
lation example is given to illustrate the effectiveness of the proposed stability criteria.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

During last decades, HNNs have been extensively investigated
due to their wide applications such as classification of patterns,
signal processing, associative memories, reconstruction of moving
images, and optimization problems [1–4]. As is known to all, it is
very important to consider stability problems of such neural net-
works before these applications. Therefore, stability problems of
HNNs have attracted considerable attention in [5–14] and the
references therein.

In practice, the synaptic transmission in real nervous systems is
a noisy process brought on by random fluctuations from the release
of neurotransmitters and other probabilistic causes. Hence, it is
significant to consider stochastic effects on the stability property of
neural networks, and many results related to this topic have been
reported in [15–24]. For example, [15] investigated the exponential
stability problem of stochastic Hopfield neural networks perturbed
by white noises. When time delays arise in such stochastic neural
networks, delay-dependent stability conditions are proposed in
[17–24] by Lyapunov–Krasovskii functional method, free weighting
matrix technique and delay partitioning technique, respectively.

In most of published papers focusing on stability analysis of
stochastic neural networks, stochastic effects were described by
Wiener process. However, there exist some jump stochastic phe-
nomena such as synaptic noises [25–27], spike trains [28,29] in

neurons, and Wiener process cannot describe these stochastic
phenomena effectively [25–29,36–38]. Recently, researchers have
recognized that Poisson process is a natural model for such sto-
chastic phenomena [25–31]. For example, in the leaky integrate-
and-fire neuronal model of [27], Poisson processes Pþ and P�

were introduced to model excitatory and inhibitory synaptic
noises resulting from synaptic inputs, respectively. Nowadays,
Poisson process as a model of activity of a neuron was experi-
mentally observed many times and on very different neuronal
structures [32–35]. Based on the above reasons, when neural
networks are subject to above jump stochastic noises, it is neces-
sary to investigate stochastic neural networks perturbed by Pois-
son noises. However, to the best of our knowledge, the stability
problem of neural networks perturbed by Poisson noises has not
been investigated yet. Research in this area should be important
and useful, which motivates us to carry out the present work.

In this paper, we investigate the stability problem for HNNs
perturbed by Poisson noises. By utilizing the martingale theory
and measure theory, a stability criteria is presented. Finally, a
simulation example is given to illustrate the effectiveness of the
proposed stability criteria.

Notation: In this paper, unless otherwise specified, we will
employ the following notation. Let ðΩ;F ; fF tgtZ0;PÞ be a com-
plete probability space with a natural filtration fF tgtZ0 and Eð�Þ be
the expectation operator with respect to the probability measure.
If A is a vector or matrix, its transpose is denoted by AT. If P is a
square matrix, P40 ðPo0Þ means that is a symmetric positive
(negative) definite matrix of appropriate dimensions while PZ0
ðPr0Þ is a symmetric positive (negative) semidefinite matrix. I
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stands for the identity matrix of appropriate dimensions. Let j � j
denote the Euclidean norm of a vector and its induced norm of a
matrix. Unless explicitly specified, matrices are assumed to have
real entries and compatible dimensions. L2ðΩÞ denotes the space
of all random variables X with EjX j 2o1, it is a Banach space with
norm JX J2 ¼ ðEjX j 2Þ1=2. L2 0;1½ Þ is the space of square integrable
functions over 0;1½ Þ. The symbol ‘n’ within a matrix represents

the symmetric terms of the matrix, e.g. X
n

Y
Z

� �¼ X
YT

Y
Z

� �
. If a function

is right continuous with left limits, this function is called càdlàg
function. If a function is left continuous with right limits, this
function is called càglàd function. Moreover, a stochastic process is
said to be càdlàg if it almost surely has sample paths which are
right continuous with left limits. A stochastic process is said to be
càglàd if it almost surely has sample paths which are left con-
tinuous with right limits.

2. Problem formulation and preliminaries

Consider the following HNNs perturbed by Poisson noises:

ðΣÞ : dxðtÞ ¼ ½�AxðtÞþBf ðxðtÞÞ� dtþCxðt�Þ dλðtÞ; ð1Þ

xð0Þ ¼ ξ; ð2Þ

where xðtÞ ¼ x1ðtÞ; x2ðtÞ;…; xnðtÞ½ �T ARn is the state; λðtÞ is a one-
dimension Poisson process defined on ðΩ;F ; fF tgtZ0;PÞ with
parameter λ40; f ðxð�ÞÞ ¼ f 1ðx1ð�ÞÞ; f 2ðx2ð�ÞÞ;…; f nðxnð�ÞÞ

� �T with f iðxi
ð�ÞÞ being the activation functions, and xð0Þ is the initial condition.

Remark 1. As pointed out in [41,42], stochastic differential
equation (1) should be interpreted as meaning the corresponding
stochastic integral equation:

xðtÞ ¼ xð0Þþ
Z t

0
½�AxðsÞþBf ðxðsÞÞ� dsþ

Z t

0
Cxðs�Þ dλðsÞ; ð3Þ

where
R t
0 Cxðs�Þ dλðsÞ is the stochastic integral with respect to the

Poisson process λðsÞ, whose definition can be found in [40,42]. It
might appear strange that one uses the left limit Cxðt�Þ rather
than Cx(t) as integrand in (1). Actually, [39] has pointed out clearly
that “When a Poisson process λðtÞ jumps, i.e., ΔλðtÞ ¼ 1, then x(t)
jumps from xðt�Þ to x(t), where the jump size is given by C. It
would not make much sense if the jump size depended on the
post-jump state x(t). It is rather convenient to assume that the
jump size is determined by the state just before the jump occurs
‘� ’ which is formally xðt�Þ. Thus, the jump size itself is given by
Cxðt�Þ .”

Remark 2. There is another explanation why the integrand should
be Cxðt�Þ. According to the definition of stochastic integral with
respect to Poisson process [40,42], the integrand of

R t
0 Cxð�Þ dλðsÞ

must be a predictable stochastic process. From [42], the solution x
(t) of the stochastic differential equation driven by Poisson process
is always F ðtÞ adapted and càdlàg, which cannot guarantee that x
(t) is a predictable process. Then, Cx(t) does not satisfy the con-
dition to be the integrand. Note that the left limit of an F ðtÞ
adapted and càdlàg process is a predictable process [40]. So Cxðt�Þ
is a predictable process. Therefore, we always use Cxðt�Þ instead
of Cx(t) as integrand in (1) [40,41].

The following assumption is made on the neuron activation
function.

Assumption 1. Each neuron activation function f ið�Þ; i¼ 1;2;…;n,
in (1), satisfies the following condition:

kir
f iðαÞ� f iðβÞ

α�β
rki; i¼ 1;2;…;n; ð4Þ

where f ið0Þ ¼ 0;α;βAR;αaβ and ki; ki are known real scalars.

To investigate the HNN (1), we will need the Itô formula for the
stochastic equation (1) as follows [39,42]:

VðT ; xðT ÞÞ ¼ Vð0; xð0ÞÞþ
Z T

0
Vtðt; xðtÞÞþVxðt; xðtÞÞ �AxðtÞð½

þBf ðxðtÞÞÞ� dtþ
Z T

0
Vðt; xðt�ÞþCxðt�ÞÞ½

�Vðt; xðt�ÞÞ� dλðtÞ; ð5Þ
where T 40 is any positive constant; Vðt; xðtÞÞ is any non-negative
function on Rþ �Rn and is continuously twice differentiable in x
and once differentiable in t.

Before stating the main results, we introduce the following
useful definitions and propositions.

Definition 1. For every xð0Þ ¼ ξ, the equilibrium point of the sto-
chastic Hopfield neural network in (1) is said to be asymptotically
stable in the mean square, if limt-1E jxðtÞj 2� �¼ 0:

Definition 2 (Dellacherie and Meyer [43]). Let Xt be a positive or
bounded measurable process on Ω; F tf gtZ0;P

� �
. The predictable

projection of Xt is the unique predictable process pXt which
satisfies: for any predictable stopping time τ

E Xτ1 τo1f g jF τ�
� �¼ pXτ1 τo1f g a:s:; ð6Þ

where 1 τo1f g is the characteristic function on ωAΩ : τðωÞo1� 	
.

Definition 3 (Dellacherie and Meyer [43]). Let At be an integrable
raw increasing process. We call the dual predictable projection of
At is the predictable increasing process AðpÞ

t defined by

E


Z
½0;1½

Xs dA
ðpÞ
s

�
¼ E


Z
½0;1½

pXs dAs

�
ð7Þ

for any bounded measurable Xt.

Proposition 1 (Klebaner [40]). Let f(t) be a càdlàg function on ½a; b�.
Then f(t) has no more than countably many discontinuities on ½a; b�.

Proposition 2 (Dellacherie and Meyer [43]). Let λðtÞ be a Poisson
process with parameter λ40. Then the dual predictable process of
λðtÞ is λt, i.e., λðtÞðpÞ ¼ λt.

Proposition 3 (Klebaner [40]). If f(t) is an F t-adapted and càdlàg
process, f ðt�Þ is predictable.

Proposition 4 (Dellacherie and Meyer [43]). If Xt is a measurable
stochastic process and Yt is a bounded predictable stochastic process,
then
pðYtXtÞ ¼ Yt

pXt : ð8Þ

3. Main results

The criterion of asymptotical stability in mean square for the
neural network (1) is given in the following theorem.

Theorem 1. The neural network (1) is asymptotically stable in the
mean square if there exist a matrix P40 and a diagonal matrix H ¼
diagðh1;h2;…;hnÞ40 such that the following linear matrix inequal-
ity (LMI) holds:

Ω¼ Ξ1 Ξ2

n �H


 �
o0; ð9Þ
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