

CLINICAL REPORT

Metal ions levels measurements for early total hip replacement malfunction diagnosis with ''plasma-sprayed ceramic'' bearings couple

D. Schiopu^{a,1}, J. Girard^{b,*}, M. Soenen^b, N. Krantz^b, H. Migaud^b

^a Foisor Hospital, 35, rue Ferdinand, 021392 Bucarest, Romania

^b Department of Orthopaedics C, University Department of Orthopaedic and Trauma surgery, Faculty of Medicine, Lille 2 University, Roger Salengro Hospital, Lille University Hospital, 59037 Lille cedex, France

Accepted: 14 September 2009

KEYWORDS

Total hip prosthesis; Friction; Metal ions level; Ceramic

Summary Diagnosis of total hip arthroplasty malfunction is usually based on clinical and radiographic findings, while metal ion blood levels monitoring is generally recommended for metal-on-metal bearings hip replacements. However, these measurements may be very useful in detecting anomalies in other bearing surfaces such as plasma sprayed ceramic bearings. We report on the case of a patient with a painful cementless ceramic-on-ceramic total hip prosthesis (PlasmaceramTM) for which metal ions blood levels suggested revision surgery in the absence of any demonstrable radiographic anomaly. The high Cobalt and moderate Chromium ion levels in blood suggested a mechanical dysfunction of the bearing couple which revealed to be a severe cam effect requiring revision surgery of both components. Measurement of metal ion blood levels may play a substantial role in the assessment of a total hip prosthesis mechanism when using another bearing surface than metal-on-metal for which this measurement is usually recommended.

© 2009 Elsevier Masson SAS. All rights reserved.

Introduction

DOI of original article:10.1016/j.rcot.2009.12.010.

* Corresponding author.

E-mail address: j_girard_lille@yahoo.fr (J. Girard).

¹ The author received a SOFCOT scholarship for this work during his advanced training in France (2008).

The measurement of blood metal ion levels in metal-onmetal [1-5] and ceramic-on-metal [6] hip replacements is highly advocated. It helps detect implant malfunction prior to the occurrence of radiographic anomalies [7-10]. Plasmasprayed ceramic was introduced in the orthopaedic field in the mid 1990s, spurred on by manufacturers and the University Hospital Centre of Limoges [11,12]. Some failures were reported due to the dissociation of the ceramic coating

1877-0568/\$ - see front matter © 2009 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.otsr.2009.09.014

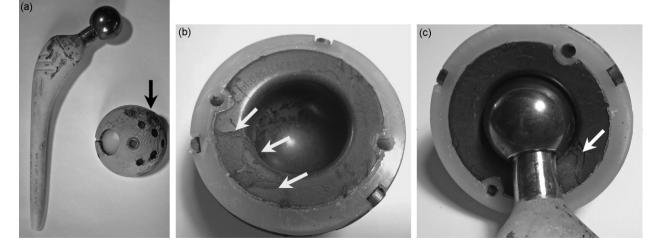


Figure 1 Radiographs revealing neither bearing surface anomaly nor osteolysis around the non-cemented Plasmaceram[™] bearing surface prosthesis.

from the metallic substrate thus leading to the progressive abandon of this hard-on-hard bearing which belongs to the ceramic-on-ceramic bearings [13]. Proper control of this uncommon bearing surface is challenging and provides difficulties in revision surgery indication, particularly in the absence of any radiographic anomaly and/or when clinical symptoms are limited. We report a clinical case which demonstrates the usefulness of blood levels of metal ion measurements in this type of situation.

Clinical case

Our clinical case is a 31-year-old female patient operated on for congenital dislocation of the left hip on three occasions: surgical repositioning at the age of walking, shelf arthroplasty in 1997 at the age of 19, non-cemented revision total hip arthroplasty (SaphirTM, CrystalTM prosthesis, Limoges, France) made of hydroxyapatite-coated titanium alloy (Figs. 1 and 2), performed in 1998 for evolutive osteoarthritis of the hip. The 22.2 mm hard-on-hard friction type was a ceramic-on-ceramic bearing surface ((PlasmaceramTM, CrystalTM, Limoges, France) with a polyethylene sandwich placed between the liner and the shell (Figs. 1 and 2). The PlasmaceramTM is a plasma sprayed hexaplasma ceramic combining chromic oxide and tungsten carbide on a titanium substrate (22.2 mm head and metal liner placed in the acetabular polyethylene sandwich). In 2004, the patient underwent a contralateral total hip arthroplasty (right hip) using a hard-on-hard bearing surface made of alumina

Figure 2 Appearance of the explants, the black arrow shows the osseo-integration process on the cup (a). The white arrows show the cam effect and its extent in the postero-inferior region of the cup (the white arrow on the right shows the contact between the neck and the border of the PlasmaceramTM) (b). However, the prosthetic neck does not reveal any contact mark (c).

Download English Version:

https://daneshyari.com/en/article/4082416

Download Persian Version:

https://daneshyari.com/article/4082416

Daneshyari.com